、設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意及,恒有
成立,求的取值范圍.
解:(Ⅰ)依題意,知的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052517385534372894/SYS201205251740426718167156_DA.files/image002.png">.
當(dāng)時(shí), ,.
令,解得.……2分
當(dāng)時(shí),;當(dāng)時(shí), .
又,所以的極小值為,無(wú)極大值 .………4分
(Ⅱ)…………5分
當(dāng)時(shí),, 令,得或,令,
得;…………6分,當(dāng)時(shí),得,令,得或,令,得;當(dāng)時(shí),.8分
綜上所述,當(dāng)時(shí),的遞減區(qū)間為;遞增區(qū)間為.
當(dāng)時(shí),在單調(diào)遞減.
當(dāng)時(shí),的遞減區(qū)間為;遞增區(qū)間為.…(9分)
(Ⅲ)由(Ⅱ)可知,當(dāng)時(shí),在單調(diào)遞減.
當(dāng)時(shí),取最大值;當(dāng)時(shí),取最小值.
所以
.……11分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052517385534372894/SYS201205251740426718167156_DA.files/image036.png">恒成立,
所以,整理得.
又 所以, 又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052517385534372894/SYS201205251740426718167156_DA.files/image041.png"> ,得,
所以所以 .………14分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分高☆考♂資♀源*網(wǎng)12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市黃浦區(qū)格致中學(xué)高三(上)第二次測(cè)驗(yàn)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省武漢市高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)當(dāng),時(shí),求所有使成立的的值。
(2)若為奇函數(shù),求證: ;
(3)設(shè)常數(shù)<,且對(duì)任意x,<0恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省珠海市高三第一次月考理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)設(shè)函數(shù),其中
(Ⅰ)當(dāng)判斷在上的單調(diào)性.
(Ⅱ)討論 的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測(cè)理科數(shù)學(xué)卷 題型:解答題
(選修4—5:不等式選講)設(shè)函數(shù)。
(1)當(dāng)a=-5時(shí),求函數(shù)的定義域。
(2)若函數(shù)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com