已知等差數(shù)列{an}中,a1007=4,s2014=2014,則s2015=
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
解答: 解:設(shè)等差數(shù)列{an}的公差為d,
∵a1007=4,s2014=2014,
a1+1006d=4
2014a1+
2014×2013
2
d=2014

解得
a1=6040
d=-6
,
∴s2015=2015×6040+
2015×2014
2
×(-6)
=-4030.
故答案為:-4030.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l、m、n是三條不同的直線,α、β、γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若l∥α,l?β,α∩β=m,n?α,m∥n,則l∥n;
②若α⊥γ,β⊥γ,則α∥β;
③若m,n是兩條異面直線,l⊥m,l⊥n,n?α,m?β且α∥β,則l⊥α;
④若l?α,m?β,n?β,l⊥m,l⊥n,則α⊥β;
其中正確命題的序號(hào)是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
y-2x≤0
y+2x-4≤0
y≥0
,求z=x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有2個(gè)人在一座7層大樓的底層進(jìn)入電梯,假設(shè)每一個(gè)人自第二層開始在每一層離開電梯是等可能的,則這2個(gè)人在不同層離開的概率是(  )
A、
6
7
B、
1
7
C、
1
6
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=xlnx,
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x>0時(shí),求函數(shù)f(x)的極值;
(3)關(guān)于x的方程f(x)=m有且只有一個(gè)實(shí)數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(2x+
π
6
)的圖象,只需把函數(shù)y=sin2x圖象上所有的點(diǎn)(  )
A、向左平移
π
3
個(gè)單位長(zhǎng)度
B、向右平移
π
3
個(gè)單位長(zhǎng)度
C、向左平移
π
12
個(gè)單位長(zhǎng)度
D、向右平移
π
12
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx.若f′(x0)=2,則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要使得函數(shù)y=x2+2x(x≤a)存在反函數(shù),則a最大等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若32x=
1
81
,則3-x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案