【題目】某位同學(xué)進(jìn)行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該小賣部的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫x(°C) | 9 | 10 | 12 | 11 | 8 |
銷量y(杯) | 23 | 25 | 30 | 26 | 21 |
(Ⅰ)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+ ;
(Ⅲ)根據(jù)(Ⅱ)中所得的線性回歸方程,若天氣預(yù)報1月16日的白天平均氣溫7(°C),請預(yù)測該奶茶店這種飲料的銷量.
(參考公式: = , = ﹣ )
【答案】解:(Ⅰ)設(shè)“選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)”為事件A,
所有基本事件(m,n)(其中m,n為1月份的日期數(shù))有:(11,12),(11,13),(11,14),
(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10種.
事件A包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4種.
所以 為所求.
(Ⅱ)由數(shù)據(jù),求得 , .
由公式,求得 , ,
所以y關(guān)于x的線性回歸方程為 .
(Ⅲ)當(dāng)x=7時, .所以該奶茶店這種飲料的銷量大約為19杯
【解析】(Ⅰ)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有4種.根據(jù)等可能事件的概率做出結(jié)果.(Ⅱ)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.(Ⅲ)利用線性回歸方程,x取7,即可預(yù)測該奶茶店這種飲料的銷量.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(Ⅰ)討論函數(shù)f(x)= ex的單調(diào)性,并證明當(dāng)x>0時,(x﹣2)ex+x+2>0;
(Ⅱ)證明:當(dāng)a∈[0,1)時,函數(shù)g(x)= (x>0)有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(2x2+x﹣y)n的展開式中各項系數(shù)的和為32,則展開式中x5y2的系數(shù)為 . (用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得2分;方案乙的中獎率為 ,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學(xué)期望較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過曲線C1: ﹣ =1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設(shè)切點為M,延長F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為( )
A.
B. ﹣1
C. +1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,
……
問:(1)此表第n行的第一個數(shù)與最后一個數(shù)分別是多少?
(2)此表第n行的各個數(shù)之和是多少?
(3)2012是第幾行的第幾個數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= 當(dāng)x∈[﹣ , ]時,恒有f(x+a)<f(x),則實數(shù)a的取值范圍是( )
A.( , )
B.(﹣1, )
C.( ,0)
D.( ,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=aex﹣xlnx,其中a∈R,e是自然對數(shù)的底數(shù).
(Ⅰ)若f(x)是(0,+∞)上的增函數(shù),求a的取值范圍;
(Ⅱ)若 ,證明:f(x)>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com