【題目】設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,則a+3b的值為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,定義域為上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.
(1)求的解析式;
(2)若關(guān)于的方程有三個不同解,求的取值范圍;
(3)若,求的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題為( )
A.存在四邊相等的四邊形不是正方形
B.z1 , z2∈C,z1+z2為實數(shù)的充分必要條件是z1 , z2互為共軛復(fù)數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N* , + +…+ 都是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學(xué)校計劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.
(1)若與成線性相關(guān),則某天售出9箱水時,預(yù)計收入為多少元?
(2)甲乙兩名學(xué)生獲一等獎學(xué)金的概率均為,獲二等獎學(xué)金的概率均為,不獲得獎學(xué)金的概率均為,已知甲乙兩名學(xué)生獲得哪個等級的獎學(xué)金相互獨立,求甲乙兩名學(xué)生所獲得獎學(xué)金之和的分布列及數(shù)學(xué)期望;
附:回歸方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三點O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點M(x,y)滿足| + |= ( + )+2.
(1)求曲線C的方程;
(2)動點Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點Q處的切線為直線l:是否存在定點P(0,t)(t<0),使得l與PA,PB都相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一位同學(xué)家里開了一個小賣部,他為了研究氣溫對熱茶銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出熱茶杯數(shù)與當(dāng)天氣溫的對比表如下:
氣溫x/℃ | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
熱茶銷售杯數(shù)y/杯 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(1)畫出散點圖;
(2)你能從散點圖中發(fā)現(xiàn)氣溫與熱茶的銷售杯數(shù)之間關(guān)系的一般規(guī)律嗎?
(3)如果近似成線性關(guān)系的話,請畫出一條直線來近似地表示這種線性關(guān)系;
(4)試求出回歸直線方程;
(5)利用(4)的回歸方程,若某天的氣溫是2 ℃,預(yù)測這一天賣出熱茶的杯數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時,ξ=0;當(dāng)兩條棱平行時,ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com