精英家教網 > 高中數學 > 題目詳情

【題目】在一次抽樣調查中測得樣本的6組數據,得到一個變量關于的回歸方程模型,其對應的數值如下表:

2

3

4

5

6

7

(1)請用相關系數加以說明之間存在線性相關關系(當時,說明之間具有線性相關關系);

(2)根據(1)的判斷結果,建立關于的回歸方程并預測當時,對應的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,,相關系數公式為:.

參考數據:

,,,.

【答案】(1) 之間存在線性相關關系;(2)0.38 ,.

【解析】試題分析:

(1)由題意求得;,說明之間存在線性相關關系;

(2)結合所給數據可求得回歸方程為,.據此預測當時,對應的值為.

試題解析:

(1)由題意,計算,

,,.

,說明之間存在線性相關關系;

(2).

.

的線性回歸方程為.

代入回歸方程得.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】媒體為調查喜歡娛樂節(jié)目是否與性格外向有關,隨機抽取了400名性格外向的和400名性格內向的居民,抽查結果用等高條形圖表示如下圖:

(1)填寫完整如下列聯(lián)表;

(2)根據列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.001的前提下認為喜歡娛樂節(jié)目與性格外向有關?

參考數據及公式:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,( ).

(Ⅰ)若有最值,求實數的取值范圍;

(Ⅱ)當時,若存在、),使得曲線處的切線互相平行,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, )展開式的前三項的二項式系數之和為16,所有項的系數之和為1.

(1)求的值;

(2)展開式中是否存在常數項?若有,求出常數項;若沒有,請說明理由;

(3)求展開式中二項式系數最大的項.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知長方形 , ,以的中點為原點,建立如圖所示的平面直角坐標系.

(1)求以為焦點,且過兩點的橢圓的標準方程;

(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設,點坐標為,若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經典”考試,并從中隨機抽取了100名考生的成績(得分均為整數,滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據頻率分布表中所提供的數據,用頻率估計概率,回答下列問題.

分組

頻數

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計

100

1.00

(1)求的值及隨機抽取一考生恰為優(yōu)秀生的概率;

(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數;

(3)在第(2)問抽取的優(yōu)秀生中指派2名學生擔任負責人,求至少一人的成績在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(Ⅰ)求函數的極值;

(Ⅱ)當時,若存在實數使得不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線θ為參數),將上的所有點的橫坐標、縱坐標分別伸長為原來的2倍后得到曲線,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線

1)試寫出曲線的極坐標方程與曲線的參數方程;

2)在曲線上求一點,使點到直線的距離最小,并求此最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程.

已知曲線在直角坐標系下的參數方程為為參數).以為極點, 軸的非負半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)直線的極坐標方程是,射線與曲線交于點,與直線交于,求線段的長.

查看答案和解析>>

同步練習冊答案