13.如圖所示,凸五面體ABCED中,DA⊥平面ABC,EC⊥平面ABC,AC=AD=AB=1,
BC=$\sqrt{2}$,F(xiàn)為BE的中點(diǎn).
(I)若CE=2,
求證:①DF∥平面ABC;
②平面BDE⊥平面BCE;
(II)若動(dòng)點(diǎn)E使得凸多面體ABCED體積為$\frac{1}{3}$,求線段CE的長(zhǎng)度.

分析 (I)①取BC的中點(diǎn)G,連接GF,GA,通過證明四邊形AGFD是平行四邊形得出DF∥AG,故DF∥平面ABC;
②證明AG⊥平面BCE,得出DF⊥平面BCE,故有平面BDE⊥平面BCE;
(II)先證明AB⊥平面ACED,再代入棱錐的體積公式計(jì)算CE.

解答 證明:(I)①取BC的中點(diǎn)G,連接GF,GA,
∵G,F(xiàn)分別是BC,BE的中點(diǎn),
∴GF∥CE,GF=$\frac{1}{2}$CE=1,
∵DA⊥平面ABC,EC⊥平面ABC,
∴DA∥CE,又DA=1,
∴AD∥GF,AD=GF,
∴四邊形AGFD是平行四邊形,
∴DF∥AG,又AG?平面ABC,DF?平面ABC,
∴DF∥平面ABC.
②∵AB=AC,G是BC的中點(diǎn),
∴AG⊥BC,
∵CE⊥平面ABC,AG?平面ABC,
∴AG⊥CE,
又BC?平面BCE,CE?平面BCE,BC∩CE=C,
∴AG⊥平面BCE.
∵AG∥DF,
∴DF⊥平面BCE,又DF?平面BDE,
∴平面BDE⊥平面BCE.
(II)∵AB=AC=1,BC=$\sqrt{2}$,
∴AB⊥AC,
∵AD⊥平面ABC,AB?平面ABC,
∴AB⊥AD,又AD?平面ACED,AC?平面ACED,AD∩AC=A,
∴AB⊥平面ACED.
∴VABCED=VB-ACED=$\frac{1}{3}$S梯形ACED•AB=$\frac{1}{3}×$$\frac{1}{2}$(1+CE)×1×1=$\frac{1}{3}$.
∴CE=1.

點(diǎn)評(píng) 本題考查了線面平行,面面垂直的判定定理,棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知四邊形ABCD,AC是BD的垂直平分線,垂足為E,O為四邊形ABCD外一點(diǎn),設(shè)|$\overrightarrow{OB}$|=5,|$\overrightarrow{OD}$|=3,則($\overrightarrow{OA}$+$\overrightarrow{OC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)y=f(x)的定義域是[0,3],則函數(shù)g(x)=$\frac{f(x+1)}{x-2}$的定義域是(  )
A.[-1,2)B.[0,2)C.[-1,2]D.[0,2)∪(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=m(x-m)(x+m+3),g(x)=2x-4若滿足對(duì)于任意x∈R,f(x)<0和g(x)<0至少有一個(gè)成立.則m的取值范圍是( 。
A.(-5,0)B.(-4,0)C.(-∞,0)D.{-4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,且滿足f(x+2)=f(-x).若當(dāng)x∈[0,1]時(shí),f(x)=3x-1
,則f(log${\;}_{\frac{1}{3}}$10)的值為( 。
A.3B.$\frac{10}{9}$C.$\frac{2}{3}$D.$\frac{10}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.去年“十•一”期間,昆曲高速公路車輛較多.某調(diào)查公司在曲靖收費(fèi)站從7座以下小型汽車中按進(jìn)收費(fèi)
站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進(jìn)行抽樣調(diào)查,將他們?cè)谀扯胃咚俟?br />路的車速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后,得到如圖的頻率分布直方圖.
(I)調(diào)查公司在抽樣時(shí)用到的是哪種抽樣方法?
(II)求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計(jì)值;
(III)若從這40輛車速在[60,70)的小型汽車中任意抽取2輛,求抽出的2輛車車速都在[65,70)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合P={x|1≤x<2},Q={1,2,3},則P∩Q=( 。
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,梯形AECD中,AE∥CD,點(diǎn)B為邊AE上一點(diǎn),CB⊥BA,$AB=2CD=2BC=\sqrt{2}BE=2$,把△BCE沿邊BC翻折成圖2,使∠EBA=45°.

(1)求證:BD⊥EC;
(2)求平面ADE與平面CDE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.從橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn)M向x軸作垂線,垂足恰為左焦點(diǎn)F1,點(diǎn)A、B是橢圓與x軸正半軸、y軸正半軸的交點(diǎn),且AB∥OM,|F1A|=$\sqrt{2}+1$.
(1)求該橢圓的離心率;
(2)若P是該橢圓上的動(dòng)點(diǎn),右焦點(diǎn)為F2,求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的取值范圍.
(3)若直線y=kx+m與橢圓E有兩個(gè)交點(diǎn)P和Q,且原點(diǎn)O總在以PQ為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案