(2011•普陀區(qū)三模)(理)極坐標(biāo)平面內(nèi)一點(diǎn)A的極坐標(biāo)為(3,-4),則點(diǎn)A到極點(diǎn)O的距離|OA|=
3
3
分析:直接根據(jù)極坐標(biāo)的定義即可得到結(jié)論.
解答:解:∵極坐標(biāo)平面內(nèi)一點(diǎn)A的極坐標(biāo)為(3,-4),
∴ρ=3,
∴點(diǎn)A到極點(diǎn)O的距離|OA|=3.
故答案為3
點(diǎn)評(píng):本題的考點(diǎn)是極坐標(biāo)系,主要考查點(diǎn)的極坐標(biāo)的定義.要求學(xué)生能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•普陀區(qū)三模)(理)已知函數(shù)f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•普陀區(qū)三模)(理)已知函數(shù)f(x)=
ln(2-x2)|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)右圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案