精英家教網 > 高中數學 > 題目詳情

已知函數的導數為實數,.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求的值;

(Ⅱ)在(Ⅰ)的條件下,求經過點且與曲線相切的直線的方程;

解:由已知得,

,得

,,

∴ 當時,,遞增;

時,,遞減.

在區(qū)間上的最大值為,∴

,

由題意得,即,得

,為所求.     

(Ⅱ)解:由(1)得,,點在曲線上.

⑴ 當切點為時,切線的斜率,

的方程為,即

⑵當切點不是切點時,設切點為,切線的斜率,

的方程為

又點上,∴ ,

,

,即,∴. ∴ 切線的方程為

故所求切線的方程為.   

( 或者:由(1)知點A(0,1)為極大值點,所以曲線的點A處的切線為,恰好經過點,符合題意.)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(08年潮州市二模理)(14分)已知函數的導數滿足,常數為方程的實數根.

⑴ 若函數的定義域為I,對任意,存在,使等式=成立,

 求證:方程不存在異于的實數根;

⑵ 求證:當時,總有成立;

⑶ 對任意,若滿足,求證

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數的導數為實數,.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;

(Ⅱ)在(Ⅰ)的條件下,求經過點且與曲線相切的直線的方程;

(Ⅲ)設函數,試判斷函數的極值點個數.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河北省高三第十次模擬考試理科數學試卷(解析版) 題型:解答題

已知函數的導數為實數,.

(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(Ⅱ)在(Ⅰ)的條件下,求經過點且與曲線相切的直線的方程;

(Ⅲ)設函數,試判斷函數的極值點個數。

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數的導數為實數,.(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求的值;(Ⅱ)在(Ⅰ)

的條件下,求經過點且與曲線相切的直線的方程;

(Ⅲ)設函數,試判斷函數的極值點個數.

查看答案和解析>>

同步練習冊答案