(2013•松江區(qū)一模)對(duì)于雙曲線C:
x2
a2
-
y2
b2
=1,(a>0,b>0)
,定義C1
x2
a2
+
y2
b2
=1
,為其伴隨曲線,記雙曲線C的左、右頂點(diǎn)為A、B.
(1)當(dāng)a>b時(shí),記雙曲線C的半焦距為c,其伴隨橢圓C1的半焦距為c1,若c=2c1,求雙曲線C的漸近線方程;
(2)若雙曲線C的方程為x2-y2=1,過(guò)點(diǎn)M(-
3
,0)
且與C的伴隨曲線相切的直線l交曲線C于N1、N2兩點(diǎn),求△ON1N2的面積(O為坐標(biāo)原點(diǎn))
(3)若雙曲線C的方程為
x2
4
-
y2
2
=1
,弦PQ⊥x軸,記直線PA與直線QB的交點(diǎn)為M,求動(dòng)點(diǎn)M的軌跡方程.
分析:(1)利用雙曲線的a、b、c的關(guān)系及橢圓的a、b、c1的關(guān)系及雙曲線的漸近線的方程即可得出;
(2)根據(jù)直線與圓相切的性質(zhì)即可求出切線的斜率,利用兩點(diǎn)間的距離公式即可求出弦長(zhǎng)|N1N2|,進(jìn)而即可求出面積;
(3)設(shè)出點(diǎn)P、Q的坐標(biāo),利用點(diǎn)斜式得出直線PA、QB的方程,聯(lián)立即可得出交點(diǎn)M的坐標(biāo),反解出點(diǎn)P的坐標(biāo),利用代點(diǎn)法即可求出軌跡.
解答:解:(1)∵c=
a2+b2
c1=
a2-b2
,
由c=2c1,得
a2+b2
=2
a2-b2
,即a2+b2=4(a2-b2
可得  
b2
a2
=
3
5
,
∴C的漸近線方程為y=±
15
5
x

(2)雙曲線C的伴隨曲線的方程為x2+y2=1,設(shè)直線l的方程為y=k(x+
3
)
,
由l與圓相切知
|
3
k|
1+k2
=1
即  3k2=1+k2
解得k=±
2
2
,
當(dāng)k=
2
2
時(shí),設(shè)N1、N2的坐標(biāo)分別為N1(x1,y1)、N2(x2,y2
y=
2
2
(x+
3
)
x2-y2=1
x2-
1
2
(x+
3
)2=1
,即x2-2
3
x-5=0

△=(2
3
)2-4•(-5)=32>0
x1+x2=2
3
,x1x2=-5.
∴|x1-x2|=
(x1+x2)2-4x1x2
=
(2
3
)2-4×(-5)
=4
2

|N1N2|=
1+(
2
2
)
2
|x1-x2|=
3
2
×4
2
=4
3
,
S△ON1N2=
1
2
×|N1N2|×1=2
3
;
由對(duì)稱性知,當(dāng)k=-
2
2
時(shí),也有S△ON1N2=2
3

(3)設(shè)P(x0,y0),則Q(x0,-y0),又A(-2,0)、B(2,0),
∴直線PA的方程為y=
y0
x0+2
(x+2)
…①
直線QB的方程為y=
-y0
x0-2
(x-2)
…②
由①②得
x0=
4
x
y0=
2y
x

∵P(x0,y0)在雙曲線
x2
4
-
y2
2
=1
上,
42
x2
4
-
4y2
x2
2
=1
,∴
x2
4
+
y2
2
=1

因此動(dòng)點(diǎn)M的軌跡是焦點(diǎn)在x軸上的橢圓,其方程為
x2
4
+
y2
2
=1
點(diǎn)評(píng):熟練掌握?qǐng)A錐曲線的定義與性質(zhì)及直線與圓錐曲線的相交、相切問(wèn)題的解題模式及弦長(zhǎng)公式、點(diǎn)到直線的距離公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)一模)設(shè)f(x)是定義在R上的函數(shù),對(duì)x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
)x-1
,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)一模)已知lgx+lgy=1,則
5
x
+
2
y
的最小值是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)一模)拋物線的焦點(diǎn)為橢圓
x2
5
+
y2
4
=1
的右焦點(diǎn),頂點(diǎn)在橢圓中心,則拋物線方程為
y2=4x
y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)一模)定義變換T將平面內(nèi)的點(diǎn)P(x,y)(x≥0,y≥0)變換到平面內(nèi)的點(diǎn)Q(
x
,
y
)

若曲線C0
x
4
+
y
2
=1(x≥0,y≥0)
經(jīng)變換T后得到曲線C1,曲線C1經(jīng)變換T后得到曲線C2…,依此類推,曲線Cn-1經(jīng)變換T后得到曲線Cn,當(dāng)n∈N*時(shí),記曲線Cn與x、y軸正半軸的交點(diǎn)為An(an,0)和Bn(0,bn).某同學(xué)研究后認(rèn)為曲線Cn具有如下性質(zhì):
①對(duì)任意的n∈N*,曲線Cn都關(guān)于原點(diǎn)對(duì)稱;
②對(duì)任意的n∈N*,曲線Cn恒過(guò)點(diǎn)(0,2);
③對(duì)任意的n∈N*,曲線Cn均在矩形OAnDnBn(含邊界)的內(nèi)部,其中Dn的坐標(biāo)為Dn(an,bn);
④記矩形OAnDnBn的面積為Sn,則
lim
n→∞
Sn=1

其中所有正確結(jié)論的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項(xiàng)a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{cn}對(duì)任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)若bn=
an+1
an
(n∈N*),求證:數(shù)列{bn}中的任意一項(xiàng)總可以表示成其他兩項(xiàng)之積.

查看答案和解析>>

同步練習(xí)冊(cè)答案