設(shè)f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,則
lim
n→+∞
n2[f(n+1)-f(n)]
=______.
由題意可得,f(n+1)-f(n)=(
1
n+2
+
1
n+3
+
1
n+4
+…+
1
2n+2
)-(
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
)=
1
2n+1
+
1
2n+2
-
1
n+1
,
lim
n→+∞
n2[f(n+1)-f(n)]
=
lim
n→+∞
n2
1
2n+1
+
1
2n+2
-
1
n+1
)=
lim
n→+∞
n2
1
(2n+1)(2n+2)
)=
lim
n→+∞
n2
4n2+6n+2
)=
lim
n→+∞
1
4+
6
n
+
2
n2
)=
1
4+0+0
=
1
4
,
故答案為
1
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),a∈R,且g(x)在x=1處取得極值.
(1)求a的值;
(2)若對(duì)0≤x≤3,不等式g(x)≤m-8ln2成立,求m的取值范圍;
(3)已知△ABC的三個(gè)頂點(diǎn)A,B,C都在函數(shù)f(x)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,討論△ABC是否為鈍角三角形,是否為等腰三角形.并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線f(x)=xlnx在x=e處的切線方程為(  )
A.y=xB.y=x-eC.y=2x+eD.y=2x-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知曲線y=3x2+2x在點(diǎn)(1,5)處的切線與直線2ax-y-6=0平行,則a=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=x3-
9
2
x2+6x+m2,其中m∈R,
(1)若函數(shù)f(x)在點(diǎn)(0,f(0))處的切線過(guò)點(diǎn)(-1,2),求m的值;
(2)若?x∈[0,3],f(x)≤m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x-1+
a
x
(a∈R,她為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)當(dāng)a=1的值時(shí),若直線l:y=kx-1與曲線y=f(x)沒(méi)有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ∈(0,π).
(Ⅰ)若f′(x)的最小值為-
3
4
,試判斷函數(shù)f(x)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(Ⅱ)若函數(shù)f(x)的極小值大于零,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)f(x)=3x-x3在區(qū)間(a-1,a)上有最小值,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

當(dāng)x∈(-1,3)時(shí)不等式的x2+ax-2<0恒成立,則a的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案