16.過點P(1,2)作直線l與x軸的正半軸和y軸的正半軸分別交于A,B兩點,求:
(1)△AOB面積的最小值及此時直線l的方程;
(2)求|PA|•|PB|的最小值及此時直線l的方程.

分析 (1)設(shè)AB的方程為$\frac{x}{a}+\frac{y}$=1(a>0,b>0),可得$\frac{1}{a}+\frac{2}$=1,利用基本不等式算出ab≥8,可得當(dāng)且僅當(dāng)a=2且b=4時,△AOB的面積S有最小值為4,進(jìn)而算出此時的直線l方程;
(2)求出|PA|,|PB|,利用二倍角的正弦公式算出|PA|•|PB|,由正弦函數(shù)的值域可得直線斜率為-1,利用點斜式方程列式,化簡可得直線l的方程.

解答 解:(1)設(shè)直線AB的方程為$\frac{x}{a}+\frac{y}$=1(a>0,b>0),
∵點P(1,2)在直線上,
∴$\frac{1}{a}+\frac{2}$=1,
由基本不等式1=$\frac{1}{a}+\frac{2}$≥2$\sqrt{\frac{2}{ab}}$,當(dāng)且僅當(dāng)a=2且b=4時,等號成立,
∴ab≥8,可得△AOB的面積S=$\frac{1}{2}$ab≥4,
因此△AOB的面積S的最小值為4,
此時的直線方程為$\frac{x}{2}+\frac{y}{4}$=1,即2x+y-4=0;
(2)設(shè)直線的傾斜角為θ,則|PA|=$\frac{2}{sin(π-θ)}$=$\frac{2}{sinθ}$,|PB|=$\frac{1}{cos(π-θ)}$=-$\frac{1}{cosθ}$,
∴|PA|•|PB|=-$\frac{4}{sin2θ}$
當(dāng)2θ=$\frac{3}{2}$π,即θ=$\frac{3}{4}π$時,|PA|•|PB|取最小值4,
此時,直線的斜率為-1,
直線l的方程為y-2=-1(x-1),化為一般式可得x+y-3=0.

點評 本題給出直線經(jīng)過定點,求滿足特殊條件的直線方程,著重考查了直線的基本量與基本形式、三角形面積的計算和基本不等式求最值等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲、乙兩名射擊運動員進(jìn)行射擊比賽,射擊次數(shù)相同,已知兩名運動員擊中的環(huán)數(shù)X穩(wěn)定在7環(huán)、8環(huán)、9環(huán)、10環(huán),他們比賽成績的統(tǒng)計結(jié)果如下:
78910
0.20.150.3
0.20.20.35
請你根據(jù)上述信息,解決下列問題:
(Ⅰ)估計甲、乙兩名射擊運動員擊中的環(huán)數(shù)都不少于9環(huán)的概率;
(Ⅱ)若從甲、乙運動員中只能挑選一名參加某大型比賽,請你從隨機(jī)變量均值意義的角度,談?wù)勛屨l參加比較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)點P(x,y)在不等式組$\left\{\begin{array}{l}{x+2y≤4}\\{x≤2}\\{x+y≥2}\end{array}\right.$表示的平面區(qū)域內(nèi)(含邊界),則x2+y2的最小值為(  )
A.8B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知平面上不共線的四點O、A、B、C,若$\overrightarrow{OA}$+5$\overrightarrow{OB}$=6$\overrightarrow{OC}$,則$\frac{|\overrightarrow{AB}|}{|\overrightarrow{BC}|}$=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且Sn是2a與-2nan的等差中項,其中a≠0.
(1)求數(shù)列{an}的前三項a1,a2,a3;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.從0~1之間隨機(jī)取數(shù)a,則事件“3a-1<0”發(fā)生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知關(guān)于x的方程x2-ax-3a=0的一個根是-2,求它的另一個根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知三棱錐D-ABC的底面ABC為等邊三角形,AB=CD=2,AD=BD=$\sqrt{2}$.
(Ⅰ)求證:平面ABC⊥平面ABD;
(Ⅱ)試求二面角A-CD-B的余弦值;
(Ⅲ)在CD上存在一點E,使二面角D-AB-E的大小為$\frac{π}{3}$,求$\frac{DE}{EC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,已知$\sqrt{3}$tanAtanB-tanA-tanB=$\sqrt{3}$.
(1)求∠C的大;
(2)設(shè)角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案