已知函數(shù)的圖象關(guān)于點(diǎn)(b,1)對稱.
(I)求a的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)函數(shù)g(x)=x3-3c2x-2c(c≤-1).若對任意x1∈[2,4],總存在x2∈[-1,0],使得f(x1)=g(x2)成立,求c的取值范圍.
【答案】分析:(I)=x-1++a+2,由y=x+(a≠2)的圖象有一個(gè)唯一的對稱中心(0,0),f(x)的對稱中心是(b,1),能求出a.
(II)由a=-1,b=1,知f(x)=.=,由此能求出函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅲ)由g(x)=x3-3c2x-2c(c≤-1),得g′(x)=3x2-3c2=3(x2-c2),由對任意x1∈[2,4],總存在x2∈[-1,0],使得f(x1)=g(x2)成立推導(dǎo)出-2c,其中c≤-1.由此能求出c的取值范圍.
解答:解:(I)∵
=
=x-1++a+2,
∵y=x+,(a≠2)的圖象有一個(gè)唯一的對稱中心(0,0),
∴f(x)有唯一一個(gè)對稱中心(1,a+2),
∵f(x)的對稱中心是(b,1),∴a=-1,b=1.
故a=-1.
(II)∵a=-1,b=1,∴f(x)=
=,
列表討論:
 x (-∞,0) 0(0,1) 1 (1,2) 2 (2,+∞)
 f′(x)+ 0- 不存在-+
 f(x)-1 不存在 3
∴函數(shù)f(x)的增區(qū)間為(-∞,0)和(2,+∞),減區(qū)間為(0,1)和(1,2).
(Ⅲ)由g(x)=x3-3c2x-2c(c≤-1),得
g′(x)=3x2-3c2=3(x2-c2),
當(dāng)x2∈[-1,0]時(shí),g′(x2)≤0,
∴g(x2)∈[g(0),g(-1)].即g(x2)∈(-2c,-2c-1),
∵f(x)在[2,4]上是增區(qū)數(shù),f(2)=3,f(4)=,

∵任意x1∈[2,4],總存在x2∈[-1,0],使得f(x1)=g(x2)成立,
∴-2c,其中c≤-1.
,解得
故c的取值范圍是[-,].
點(diǎn)評:本題考查函數(shù)的對稱中心的應(yīng)用,考查函數(shù)的單調(diào)區(qū)間的求法,考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)、等價(jià)轉(zhuǎn)化思想、分類討論思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省安慶一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,b)對稱.
(1)已知函數(shù)的圖象關(guān)于點(diǎn)(0,1)對稱,求實(shí)數(shù)m的值;
(2)已知函數(shù)g(x)在R上的圖象關(guān)于點(diǎn)(0,1)對稱,且當(dāng)x∈(0,+∞)時(shí),g(x)=x2-2x,求函數(shù)g(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)暑期檢測數(shù)學(xué)試卷1(文科)(解析版) 題型:解答題

若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,b)對稱.
(Ⅰ)已知函數(shù)的圖象關(guān)于點(diǎn)(0,1)對稱,求實(shí)數(shù)m的值;
(Ⅱ)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(diǎn)(0,1)對稱,且當(dāng)x∈(0,+∞)時(shí),g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
(Ⅲ)在(Ⅰ)、(Ⅱ)的條件下,當(dāng)t>0時(shí),若對任意實(shí)數(shù)x∈(-∞,0),恒有g(shù)(x)<f(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東冠縣武訓(xùn)高中高二下第二次模塊考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的圖象關(guān)于點(diǎn)對稱,且當(dāng)時(shí),成立(其中的導(dǎo)函數(shù)),若,,

,則的大小關(guān)系是(    )

A.      B.       C.          D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海華師大一附中高三第二學(xué)期開學(xué)檢測試題數(shù)學(xué) 題型:選擇題

.已知函數(shù)的圖象關(guān)于點(diǎn)對稱,且函數(shù)為奇函數(shù),則下列結(jié)論:(1)點(diǎn)的坐標(biāo)為;(2)當(dāng)時(shí),恒成立;(3)關(guān)于的方程有且只有兩個(gè)實(shí)根。其中正確結(jié)論的題號為(   )

A、(1)(2)       B、(2)(3)        C、(1)(3)     D、(1)(2)(3)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省濰坊市三縣高一下學(xué)期期末聯(lián)合考試(數(shù)學(xué)) 題型:選擇題

已知函數(shù)的圖象關(guān)于點(diǎn)中心對稱,則的最小值為  

A.            B.            C.           D.    

 

查看答案和解析>>

同步練習(xí)冊答案