設集合M={x|0≤x<2},集合N={x|x2-2x-3<0},集合M∩N=
[0,2)
[0,2)
分析:根據(jù)已知角一元二次不等式可以求出集合N,將M,N化為區(qū)間的形式后,根據(jù)集合交集運算的定義,即可求出M∩N的結(jié)果.
解答:解:∵N={x|x2-2x-3<0}={x|-1<x<3}=(-1,3),
M={x|0≤x<2}=[0,2],
∴M∩N=[0,2).
故答案為:[0,2).
點評:本題考查的知識點是交集及其運算,求出集合M、N,并畫出區(qū)間的形式,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

7、設集合M={x|0≤x≤1},N={y|0≤y≤1}.如圖四個圖象中,表示從M到N的映射的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={x|0<x≤3},N={x|-1<x≤2},那么“a∈M”是“a∈N”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={x|0<x≤3},集合N={x|0<x≤2},那么“a∈M”是“a∈N”的
必要不充分
必要不充分
條件.(用“充分不必要條件,必要不充分條件,充要條件”填空).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={x|0≤x≤1},函數(shù)f(x)=
1
1-x
的定義域為N,則M∩N=
[0,1)
[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題:
①設集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;
②“|
a
+
b
|<1
”是“|
a
|+|
b
|<1
”的必要不充分條件;
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”.
則上述命題中為真命題的是( 。

查看答案和解析>>

同步練習冊答案