(本小題滿分14分)

已知函數(shù)對(duì)任意實(shí)數(shù)均有,其中常數(shù)為負(fù)數(shù),且在區(qū)間上有表達(dá)式.

(1)求,的值;

(2)寫出上的表達(dá)式,并討論函數(shù)上的單調(diào)性;

(3)求出上的最小值與最大值,并求出相應(yīng)的自變量的取值.

 

【答案】

(1)

 

(2)

 

上為增函數(shù),在上為減函數(shù);

(3)①處取得最小值,在處取得最大值

時(shí),處取得最小值,在處取得最大值

時(shí),處取得最小值,在處取得最大值

【解析】本題主要考查了函數(shù)的基本性質(zhì),考查了分類討論、函數(shù)與方程、數(shù)形結(jié)合數(shù)學(xué)思想方法,考查轉(zhuǎn)化與化歸的能力、邏輯推理能力。

(1),

(2)對(duì)任意實(shí)數(shù),

當(dāng)時(shí),;

當(dāng)時(shí),

上為增函數(shù),在上為減函數(shù);

(3)由函數(shù)上的單調(diào)性可知,

處取得最小值,而在處取得最大值

故有

處取得最小值,在處取得最大值

時(shí),處取得最小值,在處取得最大值

時(shí),處取得最小值,在處取得最大值

點(diǎn)評(píng):函數(shù)基本性質(zhì)的考查是高考熱點(diǎn)問(wèn)題之一,從近幾年的高考看,函數(shù)問(wèn)題是高考中的重點(diǎn)考查內(nèi)容之一,分值近40分左右,主要是考查函數(shù)解析式、定義域、值域(最值、參數(shù)取值范圍)、函數(shù)的圖象、單調(diào)性、奇偶性等性質(zhì),考查的函數(shù)也是常見(jiàn)的二次函數(shù)、指數(shù)對(duì)數(shù)函數(shù)為主,但會(huì)將這幾種函數(shù)結(jié)合起來(lái)、將抽象函數(shù)與具體函數(shù)結(jié)合起來(lái)的趨勢(shì),這種命題的趨勢(shì)在今后幾年內(nèi)繼續(xù)保持。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案