如圖所示曲線是冪函數(shù)y=xa在第一象限內(nèi)的圖象,其中a=±
1
2
,a=±2,則曲線C1,C2,C3,C4對應(yīng)a的值依次是( 。
A、
1
2
、2、-2、-
1
2
B、2、
1
2
、-
1
2
、-2
C、-
1
2
、-2、2、
1
2
D、2、
1
2
、-2、-
1
2
考點(diǎn):冪函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)冪函數(shù)y=xa在第一象限內(nèi)的圖象特征,結(jié)合題意,即可得出正確的判斷.
解答: 解:根據(jù)冪函數(shù)y=xa在第一象限內(nèi)的圖象,知;
當(dāng)a=2時(shí),冪函數(shù)y=x2在第一象限內(nèi)是增函數(shù),圖象向上靠近y軸,符合C1特征;
當(dāng)a=
1
2
時(shí),冪函數(shù)y=x
1
2
在第一象限內(nèi)是增函數(shù),圖象向右靠近x軸,符合C2特征;
當(dāng)a=-
1
2
時(shí),冪函數(shù)y=x-
1
2
在第一象限內(nèi)是減函數(shù),圖象向右靠近x軸,符合C3特征;
當(dāng)a=-2時(shí),冪函數(shù)y=x-2在第一象限內(nèi)是減函數(shù),圖象向右更靠近x軸,符合C4特征.
綜上,曲線C1,C2,C3,C4對應(yīng)a的值依次是2、
1
2
、-
1
2
、-2.
故選:B.
點(diǎn)評:本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,解題時(shí)應(yīng)熟記常見的冪函數(shù)的圖象與性質(zhì),是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

角θ的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊在直線y=2x上,則cos2θ=( 。
A、-
4
5
B、
2
3
C、-
3
5
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a
2
n+1
=a
2
n
+4,且a1=1,an>0,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:點(diǎn)A(2,2)、點(diǎn)B(4,4)、點(diǎn)C(4,2)是⊙D上的三個(gè)點(diǎn).
(Ⅰ)求⊙D的一般方程;
(Ⅱ)直線l:x-y-4=0,點(diǎn)P在直線l上運(yùn)動,過點(diǎn)P作⊙D的兩貼切線,切點(diǎn)分別是M、N,求當(dāng)PD⊥l時(shí)四邊形PMDN的面積,并求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xoy中,直線AB的方程為3x-2y+6=0,直線AC的方程為2x+3y-22=0,直線BC的方程為3x+4y-m=0.
(1)求證:△ABC為直角三角形;
(2)當(dāng)△ABC的BC邊上的高為1時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的斜率為k,且關(guān)于x的一元二次不等式4x2-4kx+1<0的解集為空集,則直線l的傾斜角α的取值范圍是( 。
A、(0,
π
2
B、[
4
,π)
C、[0,
π
4
]∪[
4
,π)
D、(0,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有如下幾種說法:
①若直線l1,l2的斜率存在且相等,則l1∥l2;
②若直線l1⊥l2,則它們的斜率之積為-1;
③若兩條直線的傾斜角的正弦值相等,則這兩條直線平行.
在以上三種說法中,正確的個(gè)數(shù)是(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|x2-9<0},B={x|-1<x≤5},則A∩(∁RB)=( 。
A、(-3,5]
B、(-3,-1]
C、(-3,-1)
D、(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x接的弦長為2
7

(1)求圓C的方程;
(2)若圓C是過球心C的截面圓,求球的表面積.

查看答案和解析>>

同步練習(xí)冊答案