圓x2+y2-4x+2y+c=0與y軸交于A、B兩點,其圓心為P,若∠APB=120°,則實數(shù)c等于
-11
-11
分析:依題意,可求得圓x2+y2-4x+2y+c=0的圓心P,半徑r=
5-c
,|AB|=2
1-c
,由∠APB=120°,可求得c.
解答:解:∵圓x2+y2-4x+2y+c=0的圓心P(2,-1),
半徑r=
5-c
,
令x=0得:y2+2y+c=0,
設(shè)A(0,y1),B(0,y2),
則y1,y2是方程y2+2y+c=0的兩根,
∴y1,2=
-2±
4-4c
2

∴|AB|=|y1-y2|=2
1-c
,①
∵∠APB=120°,
∴|AB|=
3
r=
3
5-c
,②
由①②得:c=-11.
點評:本題考查圓的一般方程,考查方程思想與運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-4x+4y+6=0截直線x-y-5=0所得的弦長等于( 。
A、
6
B、
5
2
2
C、1
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過已知圓x2+y2-4x+2y=0,x2+y2-2y-4=0的交點,且圓心在直線2x+4y=1上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)
的漸近線和圓x2+y2-4x+3=0相切,則該雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)圓x2+y2-4x-4y-10=0上的點到直線x+y-14=0的最大距離與最小距離之差是
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)已知拋物線C:y=
1
4
x2-
3
2
xcosθ+
9
4
cos2θ+2sinθ
(θ∈R)
(I)當(dāng)θ變化時,求拋物線C的頂點的軌跡E的方程;
(II)已知直線l過圓x2+y2+4x-2y=0的圓心M,交(I)中軌跡E于A、B兩點,若
AB
=2
AM
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案