已知P(3,m)為y2=4x上一點,則P到拋物線的焦點F的距離為( 。
分析:確定拋物線的準線方程,根據(jù)拋物線的定義,可得P到拋物線的焦點F的距離等于P到拋物線的準線的距離,由此可得結(jié)論.
解答:解:y2=4x的準線方程為x=-1
根據(jù)拋物線的定義,可得P到拋物線的焦點F的距離等于P到拋物線的準線的距離
∵P(3,m)
∴P到拋物線的準線的距離為3+1=4
∴P到拋物線的焦點F的距離為4
故選C.
點評:本題考查拋物線的定義,考查學生分析解決問題的能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與C的弧
AP
的長度均為
π
3

(1)以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧德模擬)已知P是函數(shù)y=f(x)(x∈[m,n])圖象上的任意一點,M、N為該圖象的兩個端點,點Q滿足
MQ
MN
,
PQ
•i=0(其中0<λ<1,
i
為x軸上的單位向量),若|
PQ
|≤T(T為常數(shù))在區(qū)間[m,n]上恒成立,則稱y=f(x)在區(qū)間[m,n]上具有“T級線性逼近”.現(xiàn)有函數(shù):①y=2x+1;②y=
1
x
;③y=x2.則在區(qū)間[1,2]上具有“
1
4
級 線性逼近”的函數(shù)的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直角三角形PAB的直角頂點為B,點P的坐標為(3,0),點B在y軸上,點A在x軸的負半軸上,在BA的延長線上取一點C,使
BC
=3
BA

(1)當B在y軸上移動時,求動點C的軌跡方程;
(2)若直線l:y=k(x-1)與點C的軌跡交于M、N兩點,設D(-1,0),當∠MDN為銳角時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(3,0)及雙曲線E:
x2
9
-
y2
16
=1
,若雙曲線E的右支上的點Q到點B(m,0)(m≥3)距離的最小值為|AB|.
(1)求m的取值范圍,并指出當m變化時B的軌跡C
(2)如(圖1),軌跡C上是否存在一點D,它在直線y=
4
3
x
上的射影為P,使得
AP
OD
=
OP
PD
?若存在試指出雙曲線E的右焦點F分向量
AD
所成的比;若不存在,請說明理由.
(3)(理)當m為定值時,過軌跡C上的點B(m,0)作一條直線l與雙曲線E的右支交于不同的兩點(圖2),且與直線y=
4
3
x
,y=-
4
3
x
分別交于M、N兩點,求△MON周長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(4,4)為圓C:內(nèi)一定點,圓周上有兩個動點

A,B恒有

   (1)求弦AB中點M的軌跡方程

   (2)以AP和PB為鄰邊作矩形AQBP,求點Q軌跡方程

   (3)若x,y滿足Q點軌跡方程,求的最值

查看答案和解析>>

同步練習冊答案