(11分)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為組成數(shù)對(,并構(gòu)成函數(shù)
(Ⅰ)寫出所有可能的數(shù)對(,并計算,且的概率;
(Ⅱ)求函數(shù)在區(qū)間[上是增函數(shù)的概率.
(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15個.P(A)=;
(Ⅱ)P(B)==。

試題分析:(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15個. ……2分
設(shè)事件“a≥2,且b≤3”為A,     ……3分
則事件A包含的基本事件有(2,-1),(2,1),(2,2),(2,3),(3,-1),(3,1),(3,2),(3,3)共8個,  ……4分
所以P(A)=         ……5分
(Ⅱ)設(shè)事件“f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù)”為B,因函數(shù)f(x)=ax2-4bx+1的圖象的對稱軸為x=       ……7分
且a>0,
所以要使事件B發(fā)生,只需≤1即2b≤a.    ……9分
由滿足題意的數(shù)對有(1,-1)、(2,-1)、(2,1)、(3,-1)、(3,1),共5個,……10分
∴P(B)==        ……11分
點評:綜合題,古典概型概率的計算,關(guān)鍵是明確基本事件總數(shù)及導(dǎo)致事件發(fā)生的基本事件數(shù),根據(jù)題中條件,首先得到a,b的關(guān)系。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在函數(shù)數(shù)列{}是等比數(shù)列,則函數(shù)的解析式可能為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)y=f(x) (x∈R)滿足:f(x+2)=f(x),且x∈[–1, 1]時,f(x) =" |" x |,函數(shù)y=g(x)是定義在R上的奇函數(shù),且x∈(0, +∞)時,g(x) =" log" 3 x,則函數(shù)y=f(x)的圖像與函數(shù)y=g(x)的圖像的交點個數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對實數(shù),定義運算“”:,設(shè)函數(shù),若函數(shù)恰有兩個不同的零點,則實數(shù)的取值范圍是 (  ) 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為.某公司每月最多生產(chǎn)100臺報警系統(tǒng)裝置,生產(chǎn)臺()的收入函數(shù)為(單位:元),其成本函數(shù)為(單位:元),利潤是收入與成本之差.
(1)求利潤函數(shù)及邊際利潤函數(shù)的解析式,并指出它們的定義域;
(2)利潤函數(shù)與邊際利潤函數(shù)是否具有相同的最大值?說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知函數(shù),
(1)當(dāng)時,求函數(shù)的極值;
(2) 若在[-1,1]上單調(diào)遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知上的減函數(shù),則滿足的實數(shù)的取值范圍是(   )
A.B.(0,1)C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a>b,二次三項式ax2 +2x +b≥0對于一切實數(shù)x恒成立,又,使成立,則的最小值為(   )
A.1B.C.2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間[0,4]上是增函數(shù), 則的大小關(guān)系是 (     )
A.B.
C.D.無法確定

查看答案和解析>>

同步練習(xí)冊答案