【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱,旨在積極發(fā)展我國(guó)與沿線國(guó)家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.自2013年以來,“一帶一路”建設(shè)成果顯著.下圖是2013-2017年,我國(guó)對(duì)“一帶一路”沿線國(guó)家進(jìn)出口情況統(tǒng)計(jì)圖.下列描述錯(cuò)誤的是( )
A.這五年,2013年出口額最少
B.這五年,出口總額比進(jìn)口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進(jìn)口增速最快
【答案】C
【解析】
對(duì)于選項(xiàng)A:觀察五個(gè)灰色的條形圖的高低即可判斷;
對(duì)于選項(xiàng)B:觀察五組條形圖,對(duì)比每組灰色條形圖與黑色條形圖的高低及高低懸殊程度即可判斷;
對(duì)于選項(xiàng)C:從圖中知,紅色的折線圖是先上升后下降即可判斷;
對(duì)于選項(xiàng)D:觀察這五年所對(duì)的藍(lán)色折線圖的高低即可判斷;
對(duì)于選項(xiàng)A:觀察五個(gè)灰色的條形圖,可得2013年所對(duì)的灰色條形圖高度最低,所以這五年,2013年出口額最少.故選項(xiàng)A正確;
對(duì)于選項(xiàng)B:觀察五組條形圖可得,2013年出口額比進(jìn)口額稍低,但2014年—2017年都是出口額高于進(jìn)口額,并且2015年和2016年都是出口額明顯高于進(jìn)口額,故這五年,出口總額比進(jìn)口總額多.故選項(xiàng)B正確;
對(duì)于選項(xiàng)C:從圖中可知,紅色的折線圖是先上升后下降,即2013年到2014年出口增速是上升的.故選項(xiàng)C錯(cuò)誤;
對(duì)于選項(xiàng)D:從圖中可知,藍(lán)色的折線圖2017年是最高的,即2017年進(jìn)口增速最快.故選項(xiàng)D正確;
故選: C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面,,,,,是上一點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn),且二面角的余弦值是,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1,BC的中點(diǎn).
(1)求異面直線BP與AC1所成角的余弦值;
(2)求直線CC1與平面AQC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,平面平面,且.
(1)在線段上是否存在一點(diǎn),使平面,證明你的結(jié)論;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的棱長(zhǎng)均為6,其內(nèi)有個(gè)小球,球與三棱錐的四個(gè)面都相切,球與三棱錐的三個(gè)面和球都相切,如此類推,…,球與三棱錐的三個(gè)面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于點(diǎn),點(diǎn)的坐標(biāo)為(3,1),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).
(1)求異面直線AP,BM所成角的余弦值;
(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費(fèi)比率 |
該公司注冊(cè)的會(huì)員中沒有消費(fèi)超過次的,從注冊(cè)的會(huì)員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如下:
消費(fèi)次數(shù) | 次 | 次 | 次 | 次 | 次 |
人數(shù) |
假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤(rùn);
(2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會(huì)員服務(wù)的平均利潤(rùn)為元,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com