【題目】如圖,在三棱錐ABCD中,AB=AC=BD=CD=3,AD=BC=2,點(diǎn)M,N分別為AD,BC的中點(diǎn),則異面直線AN,CM所成的角的余弦值是( )
A.
B.﹣
C.﹣
D.
【答案】A
【解析】解:由題意:三棱錐ABCD中,連結(jié)ND,取ND 的中點(diǎn)為E,連結(jié)ME,
則ME∥AN,異面直線AN,CM所成的角就是∠EMC.
∵AB=AC=BD=CD=3,AD=BC=2,點(diǎn)M,N分別為AD,BC的中點(diǎn),
∴AN= ,ME=EN= ,MC=2 ,
又∵EN⊥NC,∴EC= = ;
cos∠EMC= = = .
∴異面直線AN,CM所成的角的余弦值是 .
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用異面直線及其所成的角的相關(guān)知識(shí)可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2+mx+1=0有兩個(gè)不相等的實(shí)根;
命題q:函數(shù)f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定義域?yàn)镽,
若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 證明: <f′( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)為偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞增的是( )
A.y=
B.y=﹣x2+1
C.y=lg|x|
D.y=3x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于區(qū)間,若函數(shù)同時(shí)滿足:①在上是單調(diào)函數(shù);②函數(shù), 的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
()求函數(shù)的所有“保值”區(qū)間.
()函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式 恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩頂點(diǎn)坐標(biāo)A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=1(從圓外一點(diǎn)到圓的兩條切線段長(zhǎng)相等),動(dòng)點(diǎn)C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設(shè)直線BC與曲線M的另一交點(diǎn)為D,當(dāng)點(diǎn)A在以線段CD為直徑的圓上時(shí),求直線BC的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com