【題目】如圖所示的多面體中,平面,,,且,點(diǎn)是的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)見解析 (2).
【解析】
(1)推導(dǎo)出 ,從而平面,,推導(dǎo)出,由此能證明平面,從而平面平面.
(2)以為原點(diǎn),為軸,為軸,過作平面的垂線為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.
(1)證明:∵,點(diǎn)是的中點(diǎn),∴,
∵平面,平面,
∵,∴平面,
∵平面,
∵中, ,∴,
∵中, ,
∴,
,
∴,
∴,
∵平面,
∵平面,∴平面平面.
(2)解:以為原點(diǎn),為軸,為軸,過作平面的垂線為軸,建立空間直角坐標(biāo)系,
則, ,, ,
,,,,
設(shè)平面的法向量,
則,取,得,
設(shè)平面的法向量,
則,取,得,
設(shè)二面角的平面角為,
則,
又因?yàn)榇硕娼?/span>為銳二面角,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的一焦點(diǎn)與的焦點(diǎn)重合,點(diǎn)在橢圓C上.直線l過點(diǎn)(1,1),且與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)點(diǎn)M滿足,點(diǎn)O為坐標(biāo)原點(diǎn),延長(zhǎng)線段OM與橢圓C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求出此時(shí)直線l的方程,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿足條件.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年年底,三部進(jìn)口影片登錄銀屏,包括《海王》,《龍貓》和《蜘蛛俠》,經(jīng)過了解,電影比《蜘蛛俠》早上映一周,電影的票房比《龍貓》高,《蜘蛛俠》的票房比電影低,據(jù)此可以判斷( )
A.是《海王》,是《蜘蛛俠》,是《龍貓》
B.是《蜘蛛俠》,是《龍貓》,是《海王》
C.是《龍貓》,是《海王》,是《蜘蛛俠》
D.是《龍貓》,是《蜘蛛俠》,是《海王》
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬季奧運(yùn)會(huì)即第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將在2022年2月4至2月20日在北京和張家口聯(lián)合舉行.某研究機(jī)構(gòu)為了解大學(xué)生對(duì)冰壺運(yùn)動(dòng)的興趣,隨機(jī)從某大學(xué)學(xué)生中抽取了120人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)之比為11:13,男生中有30人表示對(duì)冰壺運(yùn)動(dòng)有興趣,女生中有15人表示對(duì)冰壺運(yùn)動(dòng)沒有興趣.
(1)完成2×2列聯(lián)表,并回答能否有99%的把握認(rèn)為“對(duì)冰壺是否有興趣與性別有關(guān)”?
有興趣 | 沒有興趣 | 合計(jì) | |
男 | 30 | ||
女 | 15 | ||
合計(jì) | 120 |
(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔Hw學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰壺有興趣的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望和方差.
附:參考公式,其中n=a+b+c+d.
臨界值表:
P(K2≥K0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
K0 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),若,求證:直線的斜率為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com