不等式組
2x+y≤5
x+y≥3
0≤y≤3
所表示的平面區(qū)域的面積為(  )
A、
9
4
B、2
C、
9
2
D、
27
4
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:畫出不等式組
2x+y≤5
x+y≥3
0≤y≤3
表示的平面區(qū)域為直角三角形ABC及其內(nèi)部的部分,求得A、B、C各個點的坐標,可得直角三角形ABC的面積.
解答: 解:不等式組
2x+y≤5
x+y≥3
0≤y≤3
表示的平面區(qū)域為直角三角形ABC及其內(nèi)部的部分,如圖所示:
容易求得A(5,0),
B(3,0),由
2x+y=5
x+y=3
解得
x=2
y=1

∴C(2,1),
不等式組
2x+y≤5
x+y≥3
0≤y≤3
表示的平面區(qū)域的面積是三角形ABC的面積,即
1
2
×AB×xC=
1
2
×2×2
=2,
故選:B.
點評:本題主要考查二元一次不等式組表示平面區(qū)域,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.當CQ=
3
4
時,S與C1D1的交點為R,則C1R=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若有一點O滿足OA2+BC2=OB2+AC2=OC2+AB2,則O點是△ABC的
 
心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設過原點O的直線與圓C:(x-1)2+y2=1的一個交點為P,點M為線段OP的中點.則點M軌跡的極坐標方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖為與楊輝三角結(jié)構(gòu)相似的“巴斯卡”三角,這個三角的構(gòu)造方法是:除第一行為1外,其余各行中的每一個數(shù),都等于它右肩上的數(shù)乘以右肩所在的行數(shù),再加上左肩而得.例如第5行第3個數(shù)是35,它的右肩為6,左肩為11,右肩所在的行數(shù)為4,所以35=6×4+11.這個三角中的數(shù)與下面這個展開式中的系數(shù)有關:x(x+1)(x+2)…[x+(n-1)]=anxn+an-1xn-1+…+a1x,則在“巴斯卡”三角中,第8行從左到右的第2個數(shù)到第7個數(shù)之和為( 。
A、322559
B、35279
C、5880
D、322560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

中國古代數(shù)學著作《九章算法》中的“更相減損術”可用來求兩個正整數(shù)的最大公約數(shù).現(xiàn)應用此法求168與93的最大公約數(shù):記(168,93)為初始狀態(tài),則第一步可得(75,93),第二步得到(75,18),第三步得到(57,18),第四步將得到( 。
A、(57,18)
B、(39,3)
C、(39,18)
D、(21,18)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為B.若|BF2|=|F1F2|=2,則該橢圓的方程為( 。
A、
x2
4
+
y2
3
=1
B、
x2
3
+y2=1
C、
x2
2
+y2=1
D、
x2
4
+y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,…,n}(n≥4),從集合A中取出4個不同的數(shù)構(gòu)成有序數(shù)組(a1,a2,a3,a4),若對任意的2≤i≤4,都存在1≤j<i,使得|ai-aj|=1,則稱該數(shù)組為“1-數(shù)組”.則“1-數(shù)組”共有(  )
A、4n-4個
B、8n-24個
C、2n(n-2)個
D、
n(n-1)(n-2)(n-3)
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知點P(2
3
,
π
6
),直線l:ρcos(θ+
π
4
)=2
2
,求點P到直線l的距離.

查看答案和解析>>

同步練習冊答案