如圖,已知ABC-A1B1C1是正三棱柱,它的底面邊長和側棱長都是2,D為側棱CC1的中點.
(1)求異面直線A1D與BC所成角的大。ńY果用反三角函數(shù)值表示);
(2)求直線A1B1到平面DAB的距離.
精英家教網(wǎng)

精英家教網(wǎng)
(1)方法一:
以A1B1中點O為坐標原點,如圖建立空間直角坐標系.
由題意得A1(1,0,0),D(0,1,
3
),B(-1,2,0),C(0,2,
3
)

A1D
=(-1,1,
3
),
BC
=(1,0,
3
)

設θ為向量
A1D
BC
的夾角,cosθ=
-1+3
(-1)2+12+(
3
)
2
12+(
3
)
2
=
5
5

∴異面直線A1D與BC所成角的大小為arccos
5
5

方法二:取B1B中點E,連結A1E,DE.∵DECB
∴∠A1DE為異面直線A1D與BC所成的角.
在Rt△A1B1E中,A1E=
5
;在Rt△A1C1D中,A1D=
5

cos∠A1DE=
DE
2
 
A1D
=
5
5

∴異面直線A1D與BC所成角的大小為arccos
5
5

(2)∵ABA1B1,∴A1B1平面ABD,
∴A1B1到平面DAB的距離即為A1到平面DAB的距離,設為h.
由題意得A1D=AD=BD=
5
,AB=2

等腰△ADB底邊AB上的高為
5-1
=2
,SABD=
1
2
•2•2=2
,則SAA1B=2,
且D到平面ABB1A1的距離為
3

VA1-ABD=VD-A1AB
1
3
×S△ABD•h=
1
3
×S△A1AB×
3
,
h=
3
,
∴直線A1B1到平面DAB的距離為
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC的頂點為A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB邊所在直線的方程;
(Ⅱ)AB邊上的高線CH所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)是BE的中點,求證:
(1)FD∥平面ABC;  
(2)AF⊥平面EDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知兩點A(-
5
,0)、B(
5
,0),△ABC的內切圓的圓心在直線x=2上移動.
(Ⅰ)求點C的軌跡方程;
(Ⅱ)過點M(2,0)作兩條射線,分別交(Ⅰ)中所求軌跡于P、Q兩點,且
MP
MQ
=0,求證:直線PQ必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


如圖,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉至
A′CD,使點A'與點B之間的距離A′B=
3

(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大。
(3)求異面直線A′C與BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)證明:平面ACD⊥平面ADE;
(2)記AC=x,V(x)表示三棱錐A-CBE的體積,求V(x)的表達式;
(3)當V(x)取得最大值時,求證:AD=CE.

查看答案和解析>>

同步練習冊答案