已知0<x<1,a、b為常數(shù),且ab>0,則的最小值為(。

A(a+b)2           B(a-b)2           Ca2+b2            Da2-b2

答案:A
提示:

用排除法,0<x<1,,,那么只能選A。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年山東質(zhì)檢)(12分)

向量a=(sinωx+cosωx,1),b=(f(x),simωx),其中0<ω<l,且a∥b.將f(x)的圖象沿x軸向左平移個(gè)單位,沿y軸向下平移個(gè)單位,得到g(x)的圖象,已知g(x)的圖象關(guān)于(,0)對(duì)稱

   (I)求ω的值;

   (Ⅱ)求g(x)在[0,4π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)向量a=(sinωx+cosωx,1),b=(f(x),simωx),其中0<ω<l,且a∥b.將f(x)的圖象沿x軸向左平移個(gè)單位,沿y軸向下平移個(gè)單位,得到g(x)的圖象,已知g(x)的圖象關(guān)于(,0)對(duì)稱   (I)求ω的值; (Ⅱ)求g(x)在[0,4π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年黑龍江省高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知集合A={x|-l≤x≤3},集合B=|x|log2x<2},則A B=

A.{x|1≤x≤3}                           B.{x|-1≤x≤3}

C.{x| 0<x≤3}                            D.{x|-1≤x<0}

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

  已知函數(shù)f(x)=(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(l,f(l))處的切線與x軸平行.

  (Ⅰ)求k的值;

  (Ⅱ)求f(x)的單調(diào)區(qū)間;

  (Ⅲ)設(shè)g(x)=xf′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對(duì)任意0<x<1,g(x)<1 +e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=3x2-3ax,f(0)=b,a,b為實(shí)數(shù),1<a<2.

(1)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;

(3)設(shè)函數(shù)F(x)=[f′(x)+6x+1]·e2x,試判斷函數(shù)F(x)的極值點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案