在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種洗滌劑時,需要選用兩種不同的添加劑.現有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用.根據試驗設計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗.用X表示所選用的兩種不同的添加劑的芳香度之和.求所選用的兩種不同的添加劑的芳香度之和等于6的概率.
解:(解法1)(有序模式)設試驗中先取出x,再取出y(x,y=1,2,3,4,5,6),試驗結果記為(x,y),則基本事件列舉有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,3),(2,4),(2,5),(2,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),共30種結果,事件X結果有(1,5),(2,4),(4,2),(5,1),故P(X)==.
(解法2)(無序模式)設任取兩種添加劑記為(x,y)(x,y=1,2,…,6),基本事件有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),…,(5,6)共15種.事件X=6取法有(1,5),(2,4),故P(X)=.
科目:高中數學 來源: 題型:
“拋階磚”是國外游樂場的典型游戲之一.參與者只須將手上的“金幣”(設“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個階磚(邊長為2.1的正方形)的范圍內(不與階磚相連的線重疊),便可獲大獎. 不少人被高額獎金所吸引,紛紛參與此游戲但很少有人得到獎品,請用所學的概率知識解釋這是為什么.
分析:在拋階磚游戲中,首先可以判定此試驗為幾何概型,我們?yōu)榱嗣枋雒恳淮坞S機試驗的結果只需要確定金幣圓心O的位置即可,一旦圓心位置確定,只要當圓心O到其最近正方形的各邊的距離大于其半徑時,便可獲大獎.由此不難想到一種臨界狀態(tài),就是當金幣與正方形的一邊相切時,此時圓心O到該邊的距離為1,顯然只有當圓心O到最近正方形的各邊的距離大于1時才能獲獎,所以若中獎,金幣圓心必位于小正方形區(qū)域A內.
查看答案和解析>>
科目:高中數學 來源: 題型:
從集合A={-1,1,2}中隨機選取一個數記為k,從集合B={-2,1,2}中隨機選取一個數記為b,則直線y=kx+b不經過第三象限的概率為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
下圖是某公司10個銷售店某月銷售某產品數量(單位:臺)的莖葉圖,則數據落在區(qū)間[22,30)內的概率為________.
1 | 8 | 9 | |||
2 | 1 | 2 | 2 | 7 | 9 |
3 | 0 | 0 | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
某籃球運動員在7天中進行投籃訓練的時間(單位:min)用莖葉圖表示(如圖),圖中左列表示訓練時間的十位數,右列表示訓練時間的個位數,則該運動員這7天的平均訓練時間為________min.
6 | 4 | 5 | 7 |
7 | 2 | 5 | |
8 | 0 | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:
為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們日平均增加的睡眠時間(單位:h).試驗的觀測結果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 | 1.2 | 2.7 | 1.5 | 2.8 | 1.8 | 2.2 | 2.3 | 3.2 | 3.5 |
2.5 | 2.6 | 1.2 | 2.7 | 1.5 | 2.9 | 3.0 | 3.1 | 2.3 | 2.4 |
服用B藥的20位患者日平均增加的睡眠時間:
3.2 | 1.7 | 1.9 | 0.8 | 0.9 | 2.4 | 1.2 | 2.6 | 1.3 | 1.4 |
1.6 | 0.5 | 1.8 | 0.6 | 2.1 | 1.1 | 2.5 | 1.2 | 2.7 | 0.5 |
(1) 分別計算兩組數據的平均數,從計算結果看,哪種藥的療效更好?
(2) 根據兩組數據完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
A藥 | B藥 | |
0. 1. 2. 3. |
查看答案和解析>>
科目:高中數學 來源: 題型:
設A,B是兩個非空集合,定義運算A×B={x|x∈A∪B且x∉A∩B}.已知A={x|y=,B={y|y=2x,x>0},則A×B=( )
A.[0,1]∪(2,+∞) B.[0,1)∪[2,+∞)
C.[0,1] D.[0,2]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com