11.已知函數(shù)f(x)=2|x-2|+|x+1|.
(1)求不等式f(x)<6的解集;
(2)設(shè)m,n,p為正實(shí)數(shù),且m+n+p=f(2),求證:mn+np+pm≤3.

分析 (1)利用零點(diǎn)分段法去掉絕對(duì)值符號(hào),轉(zhuǎn)化為不等式組,解出x的范圍;
(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,將條件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可證得要求證得式子.

解答 (1)解:①x≥2時(shí),f(x)=2x-4+x+1=3x-3,由f(x)<6,∴3x-3<6,∴x<3,即2≤x<3,
②-1<x<2時(shí),f(x)=4-2x+x+1=5-x,由f(x)<6,∴5-x<6,∴x>-1,即-1<x<2,
③x≤-1時(shí),f(x)=4-2x-1-x=3-3x,由f(x)<6,∴3-3x<6,∴x>-1,可知無解,
綜上,不等式f(x)<6的解集為(-1,3);
(2)證明:∵f(x)=2|x-2|+|x+1|,∴f(2)=3,
∴m+n+p=f(2)=3,且m,n,p為正實(shí)數(shù)
∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,
∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,
∴m2+n2+p2≥mn+mp+np,
∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)
又m,n,p為正實(shí)數(shù),∴可以解得mn+np+pm≤3.
故證畢

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法、基本不等式等基礎(chǔ)知識(shí),考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.公比為2的等比數(shù)列{an}中,若a1+a2=3,則a3+a4的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直三棱柱ABC-A1B1C1所有棱長(zhǎng)均為1,則該三棱柱的外接球的表面積為( 。
A.$\frac{4π}{3}$B.$\frac{5π}{3}$C.D.$\frac{7π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)(x∈R)滿足f(-x)=4-f(x),若函數(shù)y=$\frac{2x+1}{x}$與 y=f(x) 圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則$\sum_{i=1}^{m}$(xi+yi)=2m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0);
(2)求f(x);
(3)當(dāng)0<x<2時(shí)不等式f(x)>ax-5恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知過點(diǎn)A(0,1)且斜率為k的直線?與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(I)寫出直線?的方程和圓C的圓心坐標(biāo)和半徑,并k的取值范圍;
(II)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題 p:?x∈R,x-2>lgx,命題 q:?x∈R,x2>0,則(  )
A.命題p∨q 是假命題B.命題 p∧q是真命題
C.命題p∧(¬q) 是真命題D.命題 p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{4}$-y2=1,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若$a={2^{0.5}},b=ln2,c={log_2}sin\frac{2π}{5}$,則( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

同步練習(xí)冊(cè)答案