【題目】某校有教師400人,對他們進(jìn)行年齡狀況和學(xué)歷的調(diào)查,其結(jié)果如下:

學(xué)歷

35歲以下

35-55

55歲及以上

本科

60

40

碩士

80

40

(1)若隨機(jī)抽取一人,年齡是35歲以下的概率為,求;

(2)在35-55歲年齡段的教師中,按學(xué)歷狀況用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學(xué)歷為本科的概率.

【答案】(1)20;(2)

【解析】分析:(1)(1)由由古典概型概率公式,解得,;(2)由分層抽樣的規(guī)律可知,需學(xué)歷為研究生的2人,記為,學(xué)歷為本科的3人,記為的,列舉可得總的基本事件找出符合題意得基本事件,由古典概型公式可得.

詳解(1)由已知可知,解得,

.

(2)由分層抽樣的規(guī)則可知,樣本中學(xué)歷為碩士的人數(shù)為人,記為,

學(xué)歷為本科的人數(shù)為人.記為,

從中任選2人所有的基本事件為

共10個,

設(shè)“至多有1人的學(xué)歷為本科”為事件,則事件包含的基本事件為

,共7個.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個動點(diǎn),平面交棱于點(diǎn)給出下列命題:

①存在點(diǎn),使得//平面;

對于任意的點(diǎn)平面平面;

存在點(diǎn),使得平面;

④對于任意的點(diǎn),四棱錐的體積均不變.

其中正確命題的序號是______.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)f(x)的單調(diào)遞增區(qū)間;

2)若,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ω0,0φπ,直線是函數(shù)fx)=sinωx+φ)圖象的兩條相鄰的對稱軸,若將函數(shù)fx)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,則得到的圖象的函數(shù)解析式是(

A.B.

C.y2cos2xD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,分別為內(nèi)角所對的邊,且滿足.

1)求角的大。

2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解本市的交通狀況,某校高一年級的同學(xué)分成了甲、乙、丙三個組,從下午13點(diǎn)到18點(diǎn),分別對三個路口的機(jī)動車通行情況進(jìn)行了實(shí)際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個組所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,則它們的大小關(guān)系為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2006 8 月中旬 , 湖南省資興市遇到了百年不遇的洪水災(zāi)害 . 在資興市的東江湖岸邊的點(diǎn) O (可視湖岸為直線) 停放著一只救人的小船,由于纜繩突然斷開,小船被風(fēng)刮跑,其方向與湖岸成 15°,, 速度為2.5 km/ h ,同時,岸上有一人從同一地點(diǎn)開始追趕小船 .已知他在岸上追的速度為4 km/ h ,在水中游的速度為 2 km/h .問此人能否追上小船? 若小船速度改變 ,則小船能被此人追上的最大速度是多少 ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與ab都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當(dāng)直線ABa60°角時,ABb30°角;

當(dāng)直線ABa60°角時,ABb60°角;

直線ABa所成角的最小值為45°;

直線ABa所成角的最大值為60°.

其中正確的是________.(填寫所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)分別為,其短半軸長為.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過點(diǎn)的直線與橢圓相交于兩點(diǎn).若直線的斜率之和為,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案