分析:函數(shù)對(duì)于n∈N*,通過定義fn+1(x)=f1[fn(x)],求出f2(x)=f1[f1(x)].f3(x),f4(x),f5(x),f6(x),f7(x).所以從f1(x)到f6(x),每6個(gè)一循環(huán).由此能求出結(jié)果.
解答:解:∵函數(shù)對(duì)于n∈N
*,定義f
n+1(x)=f
1[f
n(x)],
∴f
2(x)=f
1[f
1(x)]=f
1(
)=
=
.
f
3(x)=f
1[f
2(x)]=f
1(
)=
=
,
f
4(x)=f
1[f
3(x)]=f
1(
)=
=
,
f
5(x)=f
1[f
4(x)]=f
1(
)=
=
,
f
6(x)=f
1[f
5(x)]=f
1(
)=
=x,
f
7(x)=f
1[f
6(x)]=f
1(x)=
=f
1(x).
所以從f
1(x)到f
6(x),每6個(gè)一循環(huán).
∵60=10×6,
∴f
60(x)=f
6(x)=x,
故答案為:x.
點(diǎn)評(píng):本題考查函數(shù)的周期性,函數(shù)值的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,解題的關(guān)鍵是:得到從f1(x)到f6(x),求出函數(shù)值的周期.