已知等比數(shù)列{an}的首項a1>0,公比q>0,前n項和為Sn
(Ⅰ)試比較數(shù)學公式數(shù)學公式的大。
(Ⅱ)設{an}滿足:數(shù)學公式,數(shù)列{bn}滿足:數(shù)學公式,求數(shù)列{an}的通項公式和使數(shù)列{bn}成等差數(shù)列的正數(shù)k的值.

解:(Ⅰ)①當q=1時,,

②當q>0且q≠1時,=,
此時也有
綜上可知:. …(4分)
(Ⅱ)當n=1時,lga1=1?a1=10.,①
∴當n≥2時,,②
將①-②得:,
∴l(xiāng)gan=n,∴an=10n
綜上可知:對n∈N*,an=10n. …(8分)

要使{bn}成等差數(shù)列,則為常數(shù),…(10分)
故只須lgk=0,即k=1. …(12分)
分析:(Ⅰ)對公比q的值進行分類討論:①當q=1時,,,②當q>0且q≠1時,結(jié)合作差法比較大小即可得到:;
(Ⅱ)先就n的值討論:當n=1時;當n≥2時,兩式相減,從而求出數(shù)列{an}的通項公式,再計算出數(shù)列{bn}的通項公式,要使{bn}成等差數(shù)列,為常數(shù)從而求出k值.
點評:本小題主要考查等差關(guān)系的確定、數(shù)列的求和、數(shù)列與不等式的綜合等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2an,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案