【題目】已知關(guān)于的方程上恰有3個(gè)解,存在,使不等式成立.

(1)若為真命題,求正數(shù)的取值范圍;

(2)若為真命題,且為假命題,求正數(shù)的取值范圍.

【答案】(1)

(2)

【解析】

1)由,,可得,當(dāng)命題為真,結(jié)合正弦函數(shù)的圖像可得,即可求出結(jié)論;

2)命題為真,即存在,使不等式成立,轉(zhuǎn)化為,設(shè),只需,由,,求出函數(shù)的最大值,即求出為真時(shí)的取值范圍. 為真命題,且為假命題,分為假和假,分別求出的范圍,即可求解.

解:(1)因?yàn)?/span>,所以.

因?yàn)?/span>為真命題,所以

上恰有3個(gè)解,

所以,所以.

當(dāng)為真命題時(shí),的取值范圍是.

(2)不等式等價(jià)于

.

設(shè),

,所以,則.

當(dāng)為真命題時(shí),.

因?yàn)?/span>為真命題,且為假命題,所以中一真一假,

①當(dāng)假時(shí),.

②當(dāng)假時(shí),解得.

綜上,的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的左右頂點(diǎn)分別為,,為坐標(biāo)原點(diǎn),且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)為直線(xiàn)在第一象限內(nèi)的一點(diǎn),連接交橢圓于點(diǎn),連接并延長(zhǎng)交橢圓于點(diǎn).若直線(xiàn)的斜率為1,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又的導(dǎo)函數(shù).若正常數(shù) 滿(mǎn)足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面與平面平行的充分條件可以是(

A.內(nèi)有無(wú)窮多條直線(xiàn)都與平行

B.直線(xiàn),,且直線(xiàn)a不在內(nèi),也不在內(nèi)

C.直線(xiàn),直線(xiàn),且,

D.內(nèi)的任何一條直線(xiàn)都與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)購(gòu)已經(jīng)逐漸融入了人們的生活,在家里不用出門(mén)就可以買(mǎi)到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門(mén)口,所以選擇網(wǎng)購(gòu)的人數(shù)在逐年增加.某網(wǎng)店統(tǒng)計(jì)了2014年一2018年五年來(lái)在該網(wǎng)店的購(gòu)買(mǎi)人數(shù)(單位:人)各年份的數(shù)據(jù)如下表:

年份(

1

2

3

4

5

24

27

41

64

79

1)依據(jù)表中給出的數(shù)據(jù),是否可用線(xiàn)性回歸模型擬合與時(shí)間(單位:年)的關(guān)系,請(qǐng)通過(guò)計(jì)算相關(guān)系數(shù)加以說(shuō)明,(若,則該線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合)

附:相關(guān)系數(shù)公式

參考數(shù)據(jù)

2)該網(wǎng)店為了更好的設(shè)計(jì)2019年的“雙十一”網(wǎng)購(gòu)活動(dòng)安排,統(tǒng)計(jì)了2018年“雙十一”期間8個(gè)不同地區(qū)的網(wǎng)購(gòu)顧客用于網(wǎng)購(gòu)的時(shí)間x(單位:小時(shí))作為樣本,得到下表

地區(qū)

時(shí)間

0.9

1.6

1.4

2.5

2.6

2.4

3.1

1.5

①求該樣本數(shù)據(jù)的平均數(shù);

②通過(guò)大量數(shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn),該活動(dòng)期間網(wǎng)購(gòu)時(shí)間近似服從正態(tài)分布,如果預(yù)計(jì)2019年“雙十一”期間的網(wǎng)購(gòu)人數(shù)大約為50000人,估計(jì)網(wǎng)購(gòu)時(shí)間的人數(shù).

(附:若隨機(jī)變量服從正態(tài)分布,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為,

(l)設(shè)為參數(shù),若,求直線(xiàn)的參數(shù)方程;

2)已知直線(xiàn)與曲線(xiàn)交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)ax(a,b∈Z),曲線(xiàn)yf(x)在點(diǎn)(2,f(2))處的切線(xiàn)方

程為y3.

(1)f(x)的解析式;

(2)證明:曲線(xiàn)yf(x)上任一點(diǎn)的切線(xiàn)與直線(xiàn)x1和直線(xiàn)yx所圍三角形的面積為定值,

并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究女高中生身高與體重之間的關(guān)系,一調(diào)查機(jī)構(gòu)從某中學(xué)中隨機(jī)選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

體重

60

46

43

48

48

50

61

52

該調(diào)查機(jī)構(gòu)繪制出該組數(shù)據(jù)的散點(diǎn)圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系.

1)調(diào)查員甲計(jì)算得出該組數(shù)據(jù)的線(xiàn)性回歸方程為,請(qǐng)你據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

2)調(diào)查員乙仔細(xì)觀(guān)察散點(diǎn)圖發(fā)現(xiàn),這8名同學(xué)中,編號(hào)為14的兩名同學(xué)對(duì)應(yīng)的點(diǎn)與其他同學(xué)對(duì)應(yīng)的點(diǎn)偏差太大,于是提出這樣的數(shù)據(jù)應(yīng)剔除,請(qǐng)你按照這名調(diào)查人員的想法重新計(jì)算線(xiàn)性回歸話(huà)中,并據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

3)請(qǐng)你分析一下,甲和乙誰(shuí)的模型得到的預(yù)測(cè)值更可靠?說(shuō)明理由.

附:對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓x2+y2=8內(nèi)有一點(diǎn)P0-12),AB為過(guò)點(diǎn)P0且傾斜角為α的弦.

1)當(dāng)α=時(shí),求AB的長(zhǎng);

2)當(dāng)弦AB被點(diǎn)P0平分時(shí),寫(xiě)出直線(xiàn)AB的方程(用直線(xiàn)方程的一般式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案