【題目】已知關(guān)于的方程在上恰有3個(gè)解,存在,使不等式成立.
(1)若為真命題,求正數(shù)的取值范圍;
(2)若為真命題,且為假命題,求正數(shù)的取值范圍.
【答案】(1)
(2)
【解析】
(1)由,,可得,當(dāng)命題為真,結(jié)合正弦函數(shù)的圖像可得,即可求出結(jié)論;
(2)命題為真,即存在,使不等式成立,轉(zhuǎn)化為,設(shè),只需,由,,求出函數(shù)的最大值,即求出為真時(shí)的取值范圍. 為真命題,且為假命題,分為真假和真假,分別求出的范圍,即可求解.
解:(1)因?yàn)?/span>,,所以.
因?yàn)?/span>為真命題,所以
在上恰有3個(gè)解,
∴,
所以,所以.
當(dāng)為真命題時(shí),的取值范圍是.
(2)不等式等價(jià)于
.
設(shè),
,所以,則.
當(dāng)為真命題時(shí),.
因?yàn)?/span>為真命題,且為假命題,所以與中一真一假,
①當(dāng)真假時(shí),.
②當(dāng)真假時(shí),解得或.
綜上,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左右頂點(diǎn)分別為,,為坐標(biāo)原點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為直線(xiàn)在第一象限內(nèi)的一點(diǎn),連接交橢圓于點(diǎn),連接并延長(zhǎng)交橢圓于點(diǎn).若直線(xiàn)的斜率為1,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿(mǎn)足條件.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面與平面平行的充分條件可以是( )
A.內(nèi)有無(wú)窮多條直線(xiàn)都與平行
B.直線(xiàn),,且直線(xiàn)a不在內(nèi),也不在內(nèi)
C.直線(xiàn),直線(xiàn),且,
D.內(nèi)的任何一條直線(xiàn)都與平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購(gòu)已經(jīng)逐漸融入了人們的生活,在家里不用出門(mén)就可以買(mǎi)到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門(mén)口,所以選擇網(wǎng)購(gòu)的人數(shù)在逐年增加.某網(wǎng)店統(tǒng)計(jì)了2014年一2018年五年來(lái)在該網(wǎng)店的購(gòu)買(mǎi)人數(shù)(單位:人)各年份的數(shù)據(jù)如下表:
年份() | 1 | 2 | 3 | 4 | 5 |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線(xiàn)性回歸模型擬合與時(shí)間(單位:年)的關(guān)系,請(qǐng)通過(guò)計(jì)算相關(guān)系數(shù)加以說(shuō)明,(若,則該線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合)
附:相關(guān)系數(shù)公式
參考數(shù)據(jù)
(2)該網(wǎng)店為了更好的設(shè)計(jì)2019年的“雙十一”網(wǎng)購(gòu)活動(dòng)安排,統(tǒng)計(jì)了2018年“雙十一”期間8個(gè)不同地區(qū)的網(wǎng)購(gòu)顧客用于網(wǎng)購(gòu)的時(shí)間x(單位:小時(shí))作為樣本,得到下表
地區(qū) | ||||||||
時(shí)間 | 0.9 | 1.6 | 1.4 | 2.5 | 2.6 | 2.4 | 3.1 | 1.5 |
①求該樣本數(shù)據(jù)的平均數(shù);
②通過(guò)大量數(shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn),該活動(dòng)期間網(wǎng)購(gòu)時(shí)間近似服從正態(tài)分布,如果預(yù)計(jì)2019年“雙十一”期間的網(wǎng)購(gòu)人數(shù)大約為50000人,估計(jì)網(wǎng)購(gòu)時(shí)間的人數(shù).
(附:若隨機(jī)變量服從正態(tài)分布則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為,
(l)設(shè)為參數(shù),若,求直線(xiàn)的參數(shù)方程;
(2)已知直線(xiàn)與曲線(xiàn)交于,設(shè),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線(xiàn)y=f(x)上任一點(diǎn)的切線(xiàn)與直線(xiàn)x=1和直線(xiàn)y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究女高中生身高與體重之間的關(guān)系,一調(diào)查機(jī)構(gòu)從某中學(xué)中隨機(jī)選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
體重 | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
該調(diào)查機(jī)構(gòu)繪制出該組數(shù)據(jù)的散點(diǎn)圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系.
(1)調(diào)查員甲計(jì)算得出該組數(shù)據(jù)的線(xiàn)性回歸方程為,請(qǐng)你據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;
(2)調(diào)查員乙仔細(xì)觀(guān)察散點(diǎn)圖發(fā)現(xiàn),這8名同學(xué)中,編號(hào)為1和4的兩名同學(xué)對(duì)應(yīng)的點(diǎn)與其他同學(xué)對(duì)應(yīng)的點(diǎn)偏差太大,于是提出這樣的數(shù)據(jù)應(yīng)剔除,請(qǐng)你按照這名調(diào)查人員的想法重新計(jì)算線(xiàn)性回歸話(huà)中,并據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;
(3)請(qǐng)你分析一下,甲和乙誰(shuí)的模型得到的預(yù)測(cè)值更可靠?說(shuō)明理由.
附:對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計(jì)分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過(guò)點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=時(shí),求AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P0平分時(shí),寫(xiě)出直線(xiàn)AB的方程(用直線(xiàn)方程的一般式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com