正方體ABCD—A1B1C1D1的棱長為1,E、FG分別為棱AA1、CC1、A1B1的中點,則下列幾個命題:

    ①在空間中與三條直線A1D1EF,CD都相交的直線有無數(shù)條;

②點G到平面ABC1D1的距離為

③直線AA1與平面ABC1D1所成的角等于45°;

④空間四邊形ABCD1在正方體六個面內形成六個射影,其面積的最小值是

⑤直線A1C1與直線AG所成角的余弦值為;

⑥若一直線PQ既垂直于A1D,又垂直于AC,則直線PQ與BD1是垂直不相交的關系.

其中真命題是              .(寫出所有真命題的序號)

 

【答案】

 ①③④⑤;解析:在EF上任意取一點M,直線與M確定一個平面,這個平面與CD有且僅有1個交點N, 當M取不同的位置就確定不同的平面,從而與CD有不同的交點N,而直線MN與這3條異面直線都有交點的.所以①正確;

易求得點G到平面ABC1D1的距離為,

所以②錯;根據(jù)線面角的定義知③正確;

空間四邊形ABCD1在正方體的面AA1D1D內形成的射影面積為是在正方體六個面內形成六個射影面積的最小值,所以④正確;

由于ACA1C1,因此,直線AC與直線AG所成角等于直線A1C1與直線AG所成的角,所以余弦值為,

所以⑤正確;

由線面垂直的性質定理易知直線PQ與BD1是平行的關系.所以⑥錯.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內;(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值(  )

查看答案和解析>>

同步練習冊答案