二階矩陣M有特征值,其對(duì)應(yīng)的一個(gè)特征向量e=,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)變換成點(diǎn).
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值及對(duì)應(yīng)的一個(gè)特征向量.
(1)(2),
解析試題分析:(1)由于二階矩陣M有特征值,其對(duì)應(yīng)的一個(gè)特征向量e=,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)變換成點(diǎn).所以通過(guò)假設(shè)二階矩陣,其中有四個(gè)變量,根據(jù)以上的條件特征值與特征向量,以及點(diǎn)通過(guò)矩陣的變換得到的點(diǎn),可得到四個(gè)相應(yīng)的方程,從而解得結(jié)論.
(2)求矩陣M的特征值,根據(jù)特征多項(xiàng)式.即,可求得的值,即可得另一個(gè)特征值.即可寫(xiě)出相應(yīng)的一個(gè)特征向量.
試題解析:(1)解:(1)設(shè)M=,則由=6得=,
即a+b=c+d=6.
由=,得,從而a+2b=8,c+2d=4.
由a+b =6及a+2b=8,解得a=4,b=2;
由c+d =6及c+2d=4,解得c=8,d=-2,
所以M=
(2)由(1)知矩陣的特征多項(xiàng)式為
令,得矩陣的特征值為6與.
當(dāng)時(shí),
故矩陣的屬于另一個(gè)特征值的一個(gè)特征向量為.
考點(diǎn):1.矩陣的變換.2.特征向量特征值的求法.3.線性問(wèn)題模型化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、1 | B、3 | C、5 | D、9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,直線在矩陣對(duì)應(yīng)的變換下得到的直線過(guò)點(diǎn),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知矩陣,繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)的變換所對(duì)應(yīng)的矩陣為.
(Ⅰ)求矩陣;
(Ⅱ)若曲線:在矩陣對(duì)應(yīng)變換作用下得到曲線,求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二階矩陣M有特征值及對(duì)應(yīng)的一個(gè)特征向量,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)變換成,求矩陣M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)與分別變換成點(diǎn)與.
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)設(shè)直線在變換M作用下得到了直線:,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com