考點:數(shù)列的求和,數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由點(a
n,2S
n)在函數(shù)y=x
2+x的圖象上,可得2S
n=a
n2+a
n,遞推得2S
n-1=a
n-12+a
n-1(n≥2),兩式相減整理可得(a
n+a
n-1)(a
n-a
n-1-1)=0,由a
n+a
n-1≠0,可知a
n-a
n-1=1,符合等差數(shù)列的定義,即可求數(shù)列{a
n}的通項公式;
(Ⅱ)求出b
n=
=
-
,即可求T
n.
解答:
解:(Ⅰ)∵點(a
n,2S
n)在函數(shù)y=x
2+x的圖象上,
∴2S
n=a
n2+a
n,
∴2S
n-1=a
n-12+a
n-1(n≥2).
兩式相減得2a
n=a
n2-a
n-12+a
n-a
n-1.
整理得(a
n+a
n-1)(a
n-a
n-1-1)=0,
∵a
n+a
n-1≠0,
∴a
n-a
n-1=1(常數(shù)).
∴{a
n}是以1為公差的等差數(shù)列.
又2S
1=a
12+a
1,即a
12-a
1=0,解得a
1=1,
∴a
n=1+(n-1)×1=n;
(Ⅱ)2S
n=n
2+n,∴b
n=
=
-
,
∴T
n=b
1+b
2+…+b
n=(1-
)+(
-
)+…+(
-
)=1-
=
點評:本題主要考查數(shù)列與函數(shù),涉及了等差數(shù)列通項及前n項和,正確運用裂項法是關鍵.