如圖所示,∠ADC=∠DAB=,AD=DC,AB=2DC,將△DAC沿對角線AC折起,成為,使=DC.

(1)

證明:平面⊥平面ABCD

(2)

證明:求異面直線與DA所成角的大小

答案:
解析:

(1)

  ∵,取AC的中點(diǎn)E,連結(jié)、DE,則DE⊥AC,⊥AC.

  ∵為二面角D-AC-的平面角.

  ∵DE=CD

  ∴DE2=CD2

  ∴

  ∴平面⊥平面ABCD.

(2)

  延長DE交AB于F,連結(jié)CF.

  CD=AD,∠ADC=∠DAB=,E為AC中點(diǎn),CD=AF

  ∴四邊形AFCD為正方形.

  ∴CF∥DA.

  ∴為異面直線與DA所成的角(或補(bǔ)角).

  易得=DC=CF.

  ∴


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD中,ADBC,ADAB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列說法正確的是(  )

A.平面ABD⊥平面ABC 

B.平面ADC⊥平面BDC

C.平面ABC⊥平面BDC 

D.平面ADC⊥平面ABD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體A-BCD,則在四面體A-BCD中,下列說法正確的是(  )

A.平面ABD⊥平面ABC 

B.平面ADC⊥平面BDC

C.平面ABC⊥平面BDC 

D.平面ADC⊥平面ABD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川省綿陽市高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD,則在三棱錐A-BCD中,下列命題正確的是(  )

A. 平面ABD⊥平面ABC             B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC             D. 平面ADC⊥平面ABC

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三第二次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分13分)

如圖所示,為了測量河對岸AB兩點(diǎn)間的距離,在這一岸定一基線CD,現(xiàn)已測出

CDa和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,試求AB的長.

 

查看答案和解析>>

同步練習(xí)冊答案