是否存在常數(shù)a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)對(duì)于一切n∈N*都成立,若存在,求出a、b、c并證明;若不存在,試說(shuō)明理由.
假設(shè)存在a、b、c使
12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)
對(duì)于一切n∈N*都成立.
當(dāng)n=1時(shí),a(b+c)=1;
當(dāng)n=2時(shí),2a(4b+c)=6;
當(dāng)n=3時(shí),3a(9b+c)=19.
解方程組 解得
證明如下:
①當(dāng)n=1時(shí),由以上知存在常數(shù)a,b,c使等式成立.
②假設(shè)n=k(k∈N*)時(shí)等式成立,
即12+22+32+…+k2+(k-1)2+…+22+12
=k(2k2+1);
當(dāng)n=k+1時(shí),
12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12
=k(2k2+1)+(k+1)2+k2
=k(2k2+3k+1)+(k+1)2
=k(2k+1)(k+1)+(k+1)2
=(k+1)(2k2+4k+3)
=(k+1)[2(k+1)2+1].
即n=k+1時(shí),等式成立.
因此存在a=,b=2,c=1,使等式對(duì)一切n∈N*都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
n+1 | n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com