若正數(shù)a,b,c滿足a+b+c=1.
(1)求證:
1
3
≤a2+b2+c2<1;
(2)求
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值.
考點:不等式的證明
專題:選作題,不等式
分析:(1)利用條件,兩邊平方,利用基本不等式,即可證得結論;
(2)由柯西不等式可得
1
2a+1
+
1
2b+1
+
1
2c+1
=
1
5
1
2a+1
+
1
2b+1
+
1
2c+1
)(2a+1+2b+1+2c+1)≥(1+1+1)2=9,即可求
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值
解答: (1)證明:∵a+b+c=1,
∴1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≤3(a2+b2+c2),
∴a2+b2+c2
1
3

∵a-a2=a(1-a),0<a<1,∴a>a2
同理b>b2,c>c2,
∴a2+b2+c2<a+b+c=1,
1
3
≤a2+b2+c2<1;
(2)解:由柯西不等式可得
1
2a+1
+
1
2b+1
+
1
2c+1
=
1
5
1
2a+1
+
1
2b+1
+
1
2c+1
)(2a+1+2b+1+2c+1)≥(1+1+1)2=9(當且僅當a=b=c時取等號),
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值為
9
5
,當且僅當a=b=c=
1
3
時取到.
點評:本題考查不等式的證明,考查基本不等式的運用,考查柯西不等式的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設O為坐標原點,F(xiàn)1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足∠F1PF2=60°,|OP|=
7
a,則該雙曲線的離心率為(  )
A、
3
B、
2
C、
6
2
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋擲3個骰子,當至少一個5點或一個6點出現(xiàn)時,就說這次試驗成功,則在54次試驗中成功次數(shù)n的期望為( 。
A、19B、27C、54D、38

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知acosA+bcosB=ccosC,a=2bcosC,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

是否存在一個等比數(shù)列{an}同時滿足下列三個條件:①a1+a6=11且a3a4=
32
9
;②an+1>an(n∈N*);③至少存在一個m(m∈N*且m>4),使得
2
3
am-1,am2,am+1+
4
9
依次構成等差數(shù)列?若存在,求出通項公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB⊥平面α于B,DC?α,且CD⊥AC于C,求證:平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
(n≥2,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知x>-1,n∈N*,求證:(1+x)n≥1+nx
(2)已知m>0,n∈N*,ex≥m+nx對于x∈R恒成立,求m與n滿足的條件,并求當n=1時m的值.
(3)已知x≤n,n∈N*.求證:n-n(1-
x
n
n•ex≤x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=axekx-1,g(x)=lnx+kx.
(Ⅰ)當a=1時,若f(x)在(1,+∞)上為減函數(shù),g(x)在(0,1)上是增函數(shù),求k值;
(Ⅱ)對于任意k>0,x>0,f(x)>g(x)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案