如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,A點(diǎn)在PD上的射影為G點(diǎn),E點(diǎn)在AB上,平面PEC⊥平面PDC.
(Ⅰ)求證:AG∥平面PEC;
(Ⅱ)求AE的長;
(Ⅲ)求二面角E-PC-A的正弦值.
考點(diǎn):二面角的平面角及求法,直線與平面平行的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)通過證明CD⊥平面PAD,AG⊥平面PCD,作EF⊥PC于F,證明EF∥AG,利用直線與平面平行的判定定理證明AG∥平面PEC.
(Ⅱ)證明AE∥平面PCD,推出AE=GF,通過PA2=PG•PD,求出PG,利用
GF
CD
=
PG
PD
求出AE,即可.
(Ⅲ)過E作EO⊥AC于O點(diǎn),說明∠EFO即為二面角E-PC-A的平面角,利用sin∠EFO=
EO
EF
求出結(jié)果即可.
解答: 解:(Ⅰ)證明:∵CD⊥AD,CD⊥PA
∴CD⊥平面PAD∴CD⊥AG,
又PD⊥AG
∴AG⊥平面PCD           …(2分)
作EF⊥PC于F,因面PEC⊥面PCD
∴EF⊥平面PCD∴EF∥AG
又AG?面PEC,EF?面PEC,
∴AG∥平面PEC     …(4分)
(Ⅱ)由(Ⅰ)知A、E、F、G四點(diǎn)共面,又AE∥CD∴AE∥平面PCD
∴AE∥GF∴四邊形AEFG為平行四邊形,∴AE=GF       …(5分)
∵PA=3,AB=4∴PD=5,AG=
12
5

又PA2=PG•PD∴PG=
9
5
…(6分)
GF
CD
=
PG
PD
GF=
9
5
×4
5
=
36
25
AE=
36
25
…(8分)
(Ⅲ)過E作EO⊥AC于O點(diǎn),易知EO⊥平面PAC,
又EF⊥PC,∴OF⊥PC∴∠EFO即為二面角E-PC-A的平面角  …(10分)EO=AE•sin45°=
36
25
×
2
2
=
18
2
25
,又EF=AG=
12
5

sin∠EFO=
EO
EF
=
18
2
25
×
5
12
=
3
2
10
…(13分)
點(diǎn)評(píng):本題考查二面角的平面角的求法,直線與平面垂直與平行的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ACD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證:PA∥平面EDB;
(2)求證:PF=
1
3
PB;
(3)求二面角C-PB-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(4,3),保持點(diǎn)P與原點(diǎn)的距離不變,并繞原點(diǎn)分別旋轉(zhuǎn)45°、120°、-45°到P1、P2、P3的位置,求點(diǎn)P1、P2、P3的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
(a>0)
(1)判斷函數(shù)f(x)在(0,+∞)的單調(diào)性;
(2)若f(x)=x+
2b
x
在(0,4)上是減函數(shù),在(4,+∞)上是增函數(shù),求實(shí)數(shù)b的值;
(3)若c∈[1,4],求函數(shù)f(x)=x+
c
x
在區(qū)間[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若p、q滿足p-2q=1,直線px+3y+q=0必經(jīng)過
 
點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率是2,則漸近線方程為( 。
A、3x±y=0
B、x±
3
y=0
C、x±3y=0
D、
3
x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-mx2+mx+3m在(0,1)內(nèi)有極大值,無極小值,則( 。
A、m<0B、m<3
C、m>3D、0<m<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,其中a1=
1
2
,5Sn=7an-an-1+5Sn-1(n≥2);等差數(shù)列{bn},其中b3=2,b5=6.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)在數(shù)列{bn}中是否存在一項(xiàng)bm(m為正整數(shù)),使得b3,b5,bm成等比數(shù)列,若存在,求m的值;若不存在,說明理由.
(3)若cn=(bn+3)an,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,an=
2
n(n+1)
,則前n和Sn等于( 。
A、
n
n+1
B、
2n
n+1
C、
n+1
n+2
D、
2n
n+2

查看答案和解析>>

同步練習(xí)冊答案