f(x)=
1,x≥2
-1,x<2
,則不等式x2-f(x)+x-2≤0的解集是
 
考點:一元二次不等式的解法
專題:函數(shù)的性質及應用,不等式的解法及應用
分析:根據(jù)分段函數(shù)f(x),討論x≥2與x<2時,不等式x2-f(x)+x-2≤0的解集情況,求出對應的解集即可.
解答: 解:∵f(x)=
1,x≥2
-1,x<2
,
∴當x≥2時,不等式x2-f(x)+x-2≤0化為
x2-1+x-2≤0,
即x2+x-3≤0,
解得-
1+
13
2
≤x≤
13
-1
2
,
13
-1
2
<2,此時不等式的解不滿足條件;
當x<2時,不等式x2-f(x)+x-2≤0化為
x2+1+x-2≤0,
即x2+x-1≤0,
解得-
1+
5
2
≤x≤
5
-1
2

5
-1
2
<2,
∴此時不等式的解滿足條件;
綜上,原不等式的解集是{x|-
1+
5
2
≤x≤
5
-1
2
}.
故答案為:{x|-
1+
5
2
≤x≤
5
-1
2
}.
點評:本題考查了分段函數(shù)的應用問題,也考查了不等式的解法與應用問題,是綜合性題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在二項式(
x
+
1
2
4x
n的展開式中,前三項的系數(shù)成等差數(shù)列.
(1)求展開式中的二項式系數(shù)最大的項;
(2)求展開式中的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(x∈R)(其中A>0,ω>0,0<φ<
π
2
)的周期為π,且圖象上一個最低點為M(
3
,-2)
(Ⅰ)求f(x)的解析式
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)y=lg(ax2+ax+1)的定義域為R,若p是真命題,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時氣球的高是60m,則河流的寬度BC等于
 
m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n個正數(shù)a1,a2,…,an滿足a1≤a2≤…≤an(n∈N*且n≥3).
(1)當n=3時,證明:
a1a2
a3
+
a2a3
a1
+
a3a1
a2
≥a1+a2+a3
(2)當n=4時,不等式
a1a2
a3
+
a2a3
a4
+
a3a4
a1
+
a4a1
a2
≥a1+a2+a3+a4也成立,請你將其推廣到n(n∈N*且n≥3)個正數(shù)a1,a2,…,an的情形,歸納出一般性的結論并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

八個不同小球放入四個不同的盒子中,至少有兩個空盒子,問有多少種放法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,是奇函數(shù)的是( 。
A、y=x+1
B、y=
1
x
C、y=x2
D、y=x2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求方程y=
x2-2x+1
所表示的圖形.

查看答案和解析>>

同步練習冊答案