8.已知向量$\overrightarrow a$、$\vec b$滿足$|\overrightarrow a|=1,|\overrightarrow b|=2$,它們的夾角為60°,那么$|{\overrightarrow a+\vec b}|$=$\sqrt{7}$.

分析 根據(jù)平面向量的數(shù)量積與模長(zhǎng)公式,計(jì)算即可.

解答 解:向量$\overrightarrow a$、$\vec b$滿足$|\overrightarrow a|=1,|\overrightarrow b|=2$,它們的夾角為60°,
∴${(\overrightarrow{a}+\overrightarrow)}^{2}$=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$
=12+2×1×2×cos60°+22
=7
∴$|{\overrightarrow a+\vec b}|$=$\sqrt{7}$.
故答案為:$\sqrt{7}$.

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積與模長(zhǎng)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=x(x-c)2在x=2處有極大值,且對(duì)于任意x∈[5,8],f(x)-m≤0恒成立,則實(shí)數(shù)m的取值范圍為[32,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知F1,F(xiàn)2分別為雙曲線$C:\frac{x^2}{4}-\frac{y^2}{5}=1$的左、右焦點(diǎn),P為C右支上一點(diǎn),且|PF1|=2|PF2|,則△PF1F2的面積為( 。
A.$\sqrt{15}$B.$\frac{{3\sqrt{15}}}{8}$C.$2\sqrt{15}$D.$3\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.用7.2m長(zhǎng)的合金條(忽略其寬度和厚度)做一個(gè)“日”形的窗戶.當(dāng)窗戶的高為1.8m時(shí),透過(guò)的光線最多(即窗戶面積最大).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=lg\frac{kx-1}{x-1}(k∈R)$.
(1)當(dāng)k=0時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)k>0時(shí),求函數(shù)f(x)的定義域;
(3)若函數(shù)f(x)在區(qū)間[10,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知cosα≤sinα,則角α的終邊落在第一象限內(nèi)的范圍是( 。
A.(0,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{π}{2}$)
C.[2kπ+$\frac{π}{4}$,2kπ+$\frac{π}{2}$),k∈ZD.(2kπ,2kπ+$\frac{π}{4}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.與圓(x-2)2+(y+1)2=4外切于點(diǎn)A(4,-1)且半徑為1的圓的方程為(x-5)2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.5人排成一列,其中甲、乙二人相鄰的不同排法的種數(shù)為48.(結(jié)果用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知角α的終邊過(guò)點(diǎn)(3,4).
(Ⅰ)求sinα,cosα的值;
(Ⅱ)求$\frac{{2cos({\frac{π}{2}-α})-cos({π+α})}}{{2sin({π-α})}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案