已知多面體ABCDE中,AB⊥面ACD,DE⊥面ACD,AC=AD=CD=DE=2,AB=1,F(xiàn)為CE的中點(diǎn).
(Ⅰ)求證:AF⊥CD
(Ⅱ)求直線AC與平面CBE所成角的余弦值.
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算,空間中直線與直線之間的位置關(guān)系
專(zhuān)題:綜合題,空間位置關(guān)系與距離,空間角
分析:(I)取CD的中點(diǎn)O,連接AG,GF,則GF∥DE,證明CD⊥平面AGF,由線面垂直的性質(zhì),我們可以得到AF⊥CD;
(II)分別以
GD
,
GF
GA
為x,y,z軸建立空間坐標(biāo)系,求出各個(gè)頂點(diǎn)的坐標(biāo),進(jìn)而求出平面CBE的法向量,代入向量夾角公式,即可得到直線AC與平面CBE所成角的余弦值.
解答: (Ⅰ)證明:取CD的中點(diǎn),連接AG,GF,則GF∥DE.
∵AC=AD,∴AG⊥CD,
∵DE⊥平面ACD,∴DE⊥CD,∴GF⊥CD.
∵AG∩GF=G,∴CD⊥平面AGF.
∵AF?平面AGF,
∴CD⊥AF;
(Ⅱ)解:分別以
GD
,
GF
,
GA
為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系G-xyz.
A(0,0,
3
),B(0,1,
3
),C(-1,0,0),E(1,2,0)

CB
=(1,1,
3
),
CE
=(2,2,0),
CA
=(1,0,
3
)

設(shè)平面CBE的法向量為
n
=(x,y,z)
,
n
CB
=x+y+
3
z=0
n
CE
=2x+2y=0

設(shè)x=1,則
n
=(1,-1,0)
,
cos<
CA
n
>=
CA
n
|
CA
||
n
|
=
2
4

設(shè)直線AC與平面CBE所成角為θ,則sinθ=cos<
CA
n
>=
CA
n
|
CA
||
n
|
=
2
4
,
cosθ=
1-(
2
4
)
2
=
14
4

∴直線AC與平面CBE所成角的余弦值為
14
4
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與平面垂直的性質(zhì)及直線與平面所成角的求法,在使用向量法求直線與平面所成角的大小時(shí),建立坐標(biāo)系,求出平面的法向量是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(
1
2
+
3
2
i)3(i為虛數(shù)單位)的值是( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
lg(x+1)
x-2
的定義域?yàn)?nbsp;( 。
A、(-1,+∞)
B、(-∞,2)∪(2,+∞)
C、(-1,2)∪(2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an=
2
S
2
n
2Sn-1
(n≥2)
(Ⅰ)求證:數(shù)列{
1
Sn
}為等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)當(dāng)n≥2時(shí),若bn=
3-2n
2n+3
an,求b2+…+bn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上是增函數(shù),g(x)在R上是減函數(shù).求證:函數(shù)F(x)=f(x)-g(x)在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點(diǎn),AB=AC.
(Ⅰ)證明:DE∥平面ABC;
(Ⅱ)證明:平面B1DC⊥平面CBB1
(Ⅲ)若BB1=BC,求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知2Sn+1=Sn+4(n∈N*),a1=2
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)設(shè)bn=an2,{bn}的前n項(xiàng)和為T(mén)n,試比較
Sn2
Tn
與3的大;
(3)證明:不存在正整數(shù)n和大于4的正整數(shù)m使得等式am+1=
Sn+1-m
Sn-m
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
2
sinα=-
3
cosα,求2cos(2α-
π
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}和數(shù)列{bn}(n∈N+)由下列條件確定:
①a1<0,b1>0;
②當(dāng)k≥2時(shí),ak與bk滿足如下條件:當(dāng)
ak-1+bk-1
2
≥0時(shí),ak=ak-1,bk=
ak-1+bk-1
2
;當(dāng)
ak-1+bk-1
2
<0時(shí),ak=
ak-1+bk-1
2
bk=bk-1

解答下列問(wèn)題:
(Ⅰ)證明數(shù)列{ak-bk}是等比數(shù)列;
(Ⅱ)求數(shù)列{n(bn-an)}的前n項(xiàng)和為Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案