如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M之間運(yùn)動(dòng).
(1)當(dāng)時(shí),求橢圓的方程;
(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.
(1)橢圓C2方程為
(2)面積的最大值為
(1)當(dāng)時(shí),,則
設(shè)橢圓方程為,則,所以
所以橢圓C2方程為                                 …………
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135629086237.gif" style="vertical-align:middle;" />,,則,,設(shè)橢圓方程為
,得                 …………
,得代入拋物線方程得,即
,,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135628478423.gif" style="vertical-align:middle;" />的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),所以        …………
此時(shí)拋物線方程為,,直線方程為:.
聯(lián)立,得,即,
所以,代入拋物線方程得,即
.
設(shè)到直線PQ的距離為 ,
                       …………
當(dāng)時(shí),,
面積的最大值為.                   …………
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知橢圓經(jīng)過點(diǎn),過右焦點(diǎn)F且不與x軸重合的動(dòng)直線L交橢圓于兩點(diǎn),當(dāng)動(dòng)直線L的斜率為2時(shí),坐標(biāo)原點(diǎn)O到L的距離為
(Ⅰ) 求橢圓的方程;
(Ⅱ) 過F的另一直線交橢圓于兩點(diǎn),且,當(dāng)四邊形的面積S=時(shí),求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的右焦點(diǎn)與拋物線的焦點(diǎn)重合,則該雙曲線的離心率為                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)到雙曲線的漸近線的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓)的右焦點(diǎn)與拋物線的焦點(diǎn)相同,離心率為,則此橢圓的方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是圓錐曲線的離心率,設(shè)
,則的取值范圍是
A.(,0)B.(0,C.(,1)D.(1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,有一個(gè)以為焦點(diǎn)、離心率為的橢圓,設(shè)橢圓在第一象限的部分為曲線C,動(dòng)點(diǎn)P在C上,C在點(diǎn)P處的切線與軸的交點(diǎn)分別為A、B,且向量。求:
(Ⅰ)點(diǎn)M的軌跡方程;     (Ⅱ)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,下列三圖中的多邊形均為正多邊形,M、N是所在邊的中點(diǎn),雙曲線均以圖中的F1,F2為焦點(diǎn),設(shè)圖中的雙曲線的離心率分別為e1,e2,e3,則                                  (   )
A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,一橢圓與一雙曲線都以為焦點(diǎn),且都過它們的離心率分別為的值為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案