(本小題滿分13分)
如圖,已知拋物線,過點(diǎn)任作一直線與相交于兩點(diǎn),過點(diǎn)軸的平行線與直線相交于點(diǎn)為坐標(biāo)原點(diǎn)).

(1)證明:動(dòng)點(diǎn)在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點(diǎn),與(1)中的定直線相交于點(diǎn),證明:為定值,并求此定值.
(1)詳見解析,(2)8.

試題分析:(1)證明動(dòng)點(diǎn)在定直線上,實(shí)質(zhì)是求動(dòng)點(diǎn)的軌跡方程,本題解題思路為根據(jù)條件求出動(dòng)點(diǎn)的坐標(biāo),進(jìn)而探求動(dòng)點(diǎn)軌跡:依題意可設(shè)AB方程為,代入,得,即.設(shè),則有:,直線AO的方程為;BD的方程為;解得交點(diǎn)D的坐標(biāo)為,注意到,則有,因此D點(diǎn)在定直線上.(2)本題以算代征,從切線方程出發(fā),分別表示出的坐標(biāo),再化簡.設(shè)切線的方程為,代入,即,由,化簡整理得,故切線的方程可寫為,分別令的坐標(biāo)為,則,即為定值8.
試題解析:(1)解:依題意可設(shè)AB方程為,代入,得,即.設(shè),則有:,直線AO的方程為;BD的方程為;解得交點(diǎn)D的坐標(biāo)為,注意到,則有,因此D點(diǎn)在定直線上.(2)依題設(shè),切線的斜率存在且不等于零,設(shè)切線的方程為,代入,即,由,化簡整理得,故切線的方程可寫為,分別令的坐標(biāo)為,則,即為定值8.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C上任意一點(diǎn)P到兩定點(diǎn)F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)曲線C與x軸負(fù)半軸交點(diǎn)為A,過點(diǎn)M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(diǎn)(B在M、C之間),N為BC中點(diǎn).
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實(shí)數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分14分)如圖在平面直角坐標(biāo)系中,分別是橢圓的左右焦點(diǎn),頂點(diǎn)的坐標(biāo)是,連接并延長交橢圓于點(diǎn),過點(diǎn)軸的垂線交橢圓于另一點(diǎn),連接.

(1)若點(diǎn)的坐標(biāo)為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)酒杯的軸截面是拋物線x2=2y(0≤y<15)的一部分,若在杯內(nèi)放入一個(gè)半徑為3的玻璃球,則球的最高點(diǎn)與杯底的距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上的拋物線過點(diǎn)(3,
6
)

(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線y=x-2交于A、B兩點(diǎn),求證:kOA•kOB=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結(jié)論的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的三個(gè)頂點(diǎn)在拋物線上,為拋物線的焦點(diǎn),點(diǎn)的中點(diǎn),
(1)若,求點(diǎn)的坐標(biāo);
(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的方程為,定直線的方程為.動(dòng)圓與圓外切,且與直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點(diǎn), 過點(diǎn)作直線的垂線恰好經(jīng)過點(diǎn),并交軌跡于異于點(diǎn)的點(diǎn),求直線的方程及的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸端點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對稱的兩個(gè)不同點(diǎn),直線軸交于點(diǎn),判斷以線段為直徑的圓是否過點(diǎn),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案