(本小題滿分12分)

已知橢圓經過點M(-2,-1),離心率為。過點M作傾斜角

 

互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q。

(I)求橢圓C的方程;

(II)能否為直角?證明你的結論;

(III)證明:直線PQ的斜率為定值,并求這個定值。

 

【答案】

解:

(Ⅰ)由題設,得=1,                                                                     ①

 

,                                                                               ②

 

由①、②解得a2=6,b2=3,

橢圓C的方程為=1.………………………………………………………4分

 

(Ⅱ)記P(x1,y1)、Q(x2,y2).

設直線MP的方程為y+1=k(x+2),與橢圓C的方程聯(lián)立,得

(1+2k2)x2+(8k2-4k)x+8k2-8k-4=0,

-2,x1是該方程的兩根,則-2x1=,x1=

 

設直線MQ的方程為y+1=-k(x+2),

同理得x2=.…………………………………………………………8分

 

因y1+1=k(x1+2),y2+1=-k(x2+2),

 

因此直線PQ的斜率為定值.……………………………………………………12分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案