18.下列命題為真命題的是( 。
A.函數(shù)$y=x+\frac{4}{x+1}$最小值為3B.函數(shù)$y=lgx+\frac{1}{lgx}$最小值為2
C.函數(shù)$y={2^x}+\frac{1}{{{2^x}+1}}$最小值為1D.函數(shù)$y={x^2}+\frac{1}{x^2}$最小值為2

分析 利用基本不等式的使用法則“一正二定三相等”即可判斷出結(jié)論.

解答 解:A.x<-1時,y<0,因此不正確;
B.0<x<1時,lgx<0,此時y<0;
C.$y={2^x}+\frac{1}{{{2^x}+1}}$=2x+1+$\frac{1}{{2}^{x}+1}$-1>2-1=1,因此無最小值.
D.$y={x^2}+\frac{1}{x^2}$≥2$\sqrt{{x}^{2}•\frac{1}{{x}^{2}}}$=2,當(dāng)且僅當(dāng)x=±1時取等號,因此正確.
故選:D.

點(diǎn)評 本題考查了基本不等式的使用法則“一正二定三相等”,考查了推理能力與計(jì)算能力,使用基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正三棱錐P-ABC,已知AB=2,PA=3
(1)求此三棱錐體積
(2)若M是側(cè)面PBC上一點(diǎn),試在面PBC上過點(diǎn)M畫一條與棱PA垂直的線段,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\sqrt{|x|-{x}^{2}}$的定義域?yàn)閇-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三點(diǎn)O(0,0),R(-2,1),Q(2,1),曲線C上任意一點(diǎn)M(x,y)滿足$|{\overrightarrow{MR}+\overrightarrow{MQ}}|=\overrightarrow{OM}•({\overrightarrow{OR}+\overrightarrow{OQ}})+2$.
(Ⅰ)求曲線C的方程;
(Ⅱ)若A,B是曲線C上分別位于點(diǎn)Q兩邊的任意兩點(diǎn),過A,B分別作曲線C的切線交于點(diǎn)P,過點(diǎn)Q作曲線C的切線分別交直線PA,PB于D,E兩點(diǎn),證明:△QAB與△PDE的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.三角形ABC中,AB=2且AC=2BC,則三角形ABC面積的最大值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.寫出下列命題p的否定¬p,并判斷命題¬p的真假:
(1)p:?x∈R,x2+x+1>0;
(2)$p:?{x_0},{y_0}∈R,\sqrt{{{({{x_0}-1})}^2}}+{({{y_0}+1})^2}=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xoy中,點(diǎn)P到兩點(diǎn)(0,-$\sqrt{2}$)、(0,$\sqrt{2}$)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)求C的方程;
(2)過A(1,$\sqrt{2}$)作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于A的另外兩點(diǎn)B,D,證明:直線BD的斜率為定值,并求出這個定值;
(3)在(2)的條件下,△ABD的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=ln3x+ax+1(a∈R)的圖象在點(diǎn)($\frac{1}{3}$,f($\frac{1}{3}$))處的切線的傾斜角是$\frac{3π}{4}$,則a=( 。
A.-4B.4C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD.△PAD是正三角形,四邊形ABCD是直角梯形,AB∥CD,AD=CD=2AB,點(diǎn)E為PD中點(diǎn).
(I)證明:CD⊥平面PAD
(II)證明:平面PBC⊥平面PCD
(III)求二面角D-PB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案