已知拋物線C:,過(guò)C上一點(diǎn)M,且與M處的切線垂直的直線稱為C在點(diǎn)M的法線.
(Ⅰ)若C在點(diǎn)M的法線的斜率為-,求點(diǎn)M的坐標(biāo)(x,y
(Ⅱ)設(shè)P(-2,a)為C對(duì)稱軸上的一點(diǎn),在C上是否存在點(diǎn),使得C在該點(diǎn)的法線通過(guò)點(diǎn)P?若有,求出這些點(diǎn),以及C在這些點(diǎn)的法線方程;若沒(méi)有,請(qǐng)說(shuō)明理由.
【答案】分析:(1)由切線和法線垂直,則其斜率之積等于-1,可得M處的切線的斜率k=2,再根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合已知即可求得點(diǎn)M的坐標(biāo);
(2)設(shè)M(x,y為C上一點(diǎn),分x=-2和x≠-2兩種情況討論,結(jié)合題意和導(dǎo)數(shù)的幾何意義可得到等量關(guān)系(x+2)2=a,然后再分a>0,a=0,a<0三種情況分析,即可求解.
解答:解:(Ⅰ)由題意知,M處的切線的斜率k==2,
∵y′=2x+4,
∴2x+4=2,解得x=-1,
將x=-1代入中,解得y=,
∴M(-1,);
(Ⅱ)設(shè) M(x,y為C上一點(diǎn),
①若x=-2,則C上點(diǎn)M(-2,-)處的切線斜率 k=0,過(guò)點(diǎn)M(-2,-) 的法線方程為x=-2,此法線過(guò)點(diǎn)P(-2,a);
②若 x≠-2,則過(guò)點(diǎn) M(x,y的法線方程為:y-y=-(x-x) ①
若法線過(guò)P(-2,a),則 a-y=-(-2-x),即(x+2)2=a  ②
若a>0,則x=-2±,從而y=,將上式代入①,
化簡(jiǎn)得:x+2y+2-2a=0或x-2y+2+2a=0,
若a=0與x≠-2矛盾,若a<0,則②式無(wú)解.
綜上,當(dāng)a>0時(shí),在C上有三個(gè)點(diǎn)(-2+,),(-2-,)及
(-2,-),在這三點(diǎn)的法線過(guò)點(diǎn)P(-2,a),其方程分別為:
x+2y+2-2a=0,x-2y+2+2a=0,x=-2.
當(dāng)a≤0時(shí),在C上有一個(gè)點(diǎn)(-2,-),在這點(diǎn)的法線過(guò)點(diǎn)P(-2,a),其方程為:x=-2.
點(diǎn)評(píng):本題通過(guò)曲線的切線和法線問(wèn)題,考查了導(dǎo)數(shù)的運(yùn)算和幾何意義,同時(shí)綜合運(yùn)用了分類討論的數(shù)學(xué)思想,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y=x2+4x+
7
2
,過(guò)拋物線C上點(diǎn)M且與M處的切線垂直的直線稱為拋物線C在點(diǎn)M的法線.
(1)若拋物線C在點(diǎn)M的法線的斜率為-
1
2
,求點(diǎn)M的坐標(biāo)(x0,y0);
(2)設(shè)P(-2,4)為C對(duì)稱軸上的一點(diǎn),在C上一定存在點(diǎn),使得C在該點(diǎn)的法線通過(guò)點(diǎn)P.試求出這些點(diǎn),以及C在這些點(diǎn)的法線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C,過(guò)C上一點(diǎn)M,且與M處的切線垂直的直線稱為C在點(diǎn)M的法線.若C在點(diǎn)M的法線的斜率為,求點(diǎn)M的坐標(biāo)(x0,y0);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C,過(guò)C上一點(diǎn)M,且與M處的切線垂直的直線稱為C在點(diǎn)M的法線.

(1)若C在點(diǎn)M的法線的斜率為,求點(diǎn)M的坐標(biāo)(x0,y0);

(2)設(shè)P(-2,a)為C對(duì)稱軸上的一點(diǎn),在C上是否存在點(diǎn),使得C在該點(diǎn)的法線通過(guò)點(diǎn)P?若有,求出這些點(diǎn),以及C在這些點(diǎn)的法線方程;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年蘇教版高中數(shù)學(xué)選修1-1 2.4拋物線練習(xí)卷(解析版) 題型:解答題

已知拋物線C,過(guò)C上一點(diǎn)M,且與M處的切線垂直的直線稱為C在點(diǎn)M的法線.

(1)若C在點(diǎn)M的法線的斜率為,求點(diǎn)M的坐標(biāo)(x0,y0);

(2)設(shè)P(-2,a)為C對(duì)稱軸上的一點(diǎn),在C上是否存在點(diǎn),使得C在該點(diǎn)的法線通過(guò)點(diǎn)P?若有,求出這些點(diǎn),以及C在這些點(diǎn)的法線方程;若沒(méi)有,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆遼寧省大連市高二上學(xué)期期末考試(文科)試題 題型:解答題

已知拋物線C:,過(guò)C上一點(diǎn)M,且與M處的切線垂直的直線稱為C在點(diǎn)M的法線.若C在點(diǎn)M的法線的斜率為,求點(diǎn)M的坐標(biāo)(x0,y0

 

查看答案和解析>>

同步練習(xí)冊(cè)答案