分析 (1)直線l將圓O分成的兩端弧之比為1:3,可得劣弧所對(duì)的圓心角為90°,即可求m的值;
(2)由“若四邊形面積最小,則圓心與點(diǎn)P的距離最小時(shí),即距離為圓心到直線的距離時(shí),切線長(zhǎng)PA,PB最小”,即可求m的值;
(3)以M為圓心的圓與圓O有公共點(diǎn),半徑最小時(shí)為與圓O相切的情形,而這些半徑的最小值為圓O到直線l的距離減去圓O的半徑,即可求出半徑最小的圓的方程.
解答 解:(1)∵直線l將圓O分成的兩端弧之比為1:3,
∴劣弧所對(duì)的圓心角為90°,
∴圓心到直線的距離d=$\frac{|m|}{\sqrt{5}}$=2×$\frac{\sqrt{2}}{2}$,
∴m=±$\sqrt{10}$;
(2)根據(jù)題意,若四邊形面積最小,當(dāng)圓心與點(diǎn)P的距離最小時(shí),即距離為圓心到直線l的距離最小時(shí),
切線長(zhǎng)PA,PB最。芯長(zhǎng)為$\sqrt{5}$,圓心到直線l的距離為3,∴d=$\frac{|m|}{\sqrt{5}}$=3,
∴m=±3$\sqrt{5}$;
(3)以M為圓心的圓與圓O有公共點(diǎn),半徑最小時(shí)為與圓O相切的情形,而這些半徑的最小值為圓O到直線l的距離減去圓O的半徑,圓心M為過原點(diǎn)且與l垂直的直線l′與l的交點(diǎn)P0,所以r=3$\sqrt{5}$-2,
又l′:x-2y=0,聯(lián)立l:2x+y+m=0得P0(-$\frac{6\sqrt{5}}{5}$,-$\frac{3\sqrt{5}}{5}$)或P0(-$\frac{6\sqrt{5}}{5}$,-$\frac{3\sqrt{5}}{5}$).
所以所求圓的方程為(x-$\frac{6\sqrt{5}}{5}$)2+(y-$\frac{3\sqrt{5}}{5}$)2=(3$\sqrt{5}$-2)2或(x+$\frac{6\sqrt{5}}{5}$)2+(y+$\frac{3\sqrt{5}}{5}$)2=(3$\sqrt{5}$-2)2.
點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查圓的方程,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{4+\frac{π^2}{9}}$ | C. | $\sqrt{1+\frac{π^2}{9}}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,$\frac{3π}{4}$) | B. | (2$\sqrt{3}$,$\frac{3π}{4}$) | C. | (2$\sqrt{3}$,π) | D. | (3,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com