7.求圓x2+y2-2x+4y+1=0的圓心到雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1經(jīng)過一、三象限的漸近線的距離.

分析 求出圓的圓心坐標(biāo),雙曲線的漸近線方程,然后利用點(diǎn)到直線的距離公式求解即可.

解答 解:圓x2+y2-2x+4y+1=0的圓心(1,-2),
雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1經(jīng)過一、三象限的漸近線:4x-3y=0,
圓心到雙曲線的漸近線的距離為:$\frac{|4+6|}{\sqrt{{4}^{2}+(-3)^{2}}}$=2.

點(diǎn)評(píng) 本題考查圓的圓心與雙曲線的漸近線的距離的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,三棱錐P-ABC中,D是AC的中點(diǎn),PA=PB=PC=$\sqrt{5}$,AC=2$\sqrt{2}$,AB=$\sqrt{2}$,BC=$\sqrt{6}$.
(1)求證:PD⊥平面ABC;
(2)(理科做文科不做)求二面角P-AB-C的正切值大。
(3)(文科做理不做)線段AB上是否存在一點(diǎn)E,使得BC∥面PDE?若存在,請(qǐng)給出證明,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x-y-1=0.
(1)求a,b的值;  
(2)證明:f(x)+$\frac{1}{x}$≥1;
(3)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點(diǎn),且g(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若P(x,y)在橢圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))上,則x+2y的取值范圍為( 。
A.(-∞,2$\sqrt{2}$)B.[2$\sqrt{2}$,+∞)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.(-∞,-2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow$=(3,-4tanα).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求sinα的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow$,且α為銳角,求cos(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)數(shù)列{an}滿足,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n>1)$,${a_5}=\frac{8}{5}$,則a1=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0)可利用輔助角公式化為f(x)=$\sqrt{{a}^{2}+^{2}}$sin(ωx+φ) (其中tanφ=$\frac{a}$).若f(x)的周期為π,且對(duì)一切x∈R,都有f(x)$≤f(\frac{π}{12})=4$;
(1)求函數(shù)f(x)的表達(dá)式;
(2)若g(x)=f($\frac{π}{6}-x$),求函數(shù)g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從{1,2,3,4,…,50}中任取5個(gè)數(shù)(可以相同),則取到合數(shù)的個(gè)數(shù)的數(shù)學(xué)期望為$\frac{17}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)任意x∈[1,4],f(4x)≤g(x),求實(shí)數(shù)a的取值范圍;
(3)設(shè)a>-2,求函數(shù)h(x)=g(x)-f(x),x∈[1,2]的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案