(13分)已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:
①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實數(shù)x∈,都有f(x)-2mx≤1成立,求實數(shù)m的取值范圍.
科目:高中數(shù)學 來源: 題型:
(本題13分)已知函數(shù)f (x) = ln(ex + a)(a為常數(shù))是實數(shù)集R上的奇函數(shù),函數(shù)g (x) =
f (x) + sinx是區(qū)間[1,1]上的減函數(shù).
(1)求a的值;
(2)若g (x)≤t2 +t + 1在x∈[1,1]上恒成立,求t的取值范圍;
(3)討論關(guān)于x的方程的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)
已知函數(shù)f(x)=ln2(1+x)-.
(I) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式對任意的都成立(其中e是自然對數(shù)的底數(shù)).
求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)已知函數(shù)f (x)=2n在[0,+上最小值是a(n∈N*).
(1)求數(shù)列{a}的通項公式;(2)已知數(shù)列{b}中,對任意n∈N*都有ba =1成立,設S為數(shù)列{b}的前n項和,證明:2S<1;(3)在點列A(2n,a)中是否存在兩點A,A(i,j∈N*),使直線AA的斜率為1?若存在,求出所有的數(shù)對(i,j);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)
已知函數(shù)f (x) = 2cos2x-2sinxcosx + 1.
(1)設方程f (x) – 1 = 0在(0,)內(nèi)的兩個零點x1,x2,求x1 + x2的值;
(2)把函數(shù)y = f (x)的圖象向左平移m (m>0)個單位使所得函數(shù)的圖象關(guān)于點(0,2)對稱,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省長沙市高三第四次月考理科數(shù)學試卷 題型:解答題
(本小題滿分13分)已知函數(shù)f (x) =
(1)若函數(shù)f (x)在其定義域內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f (x)的圖象在x = 1處的切線垂直于y軸,數(shù)列{}滿足
.
①若a1≥3,求證:an≥n + 2;
②若a1 = 4,試比較的大小,并說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com