5.已知tanα=3,則$\frac{2sinα-cosα}{sinα+3cosα}$等于(  )
A.$\frac{1}{3}$B.$\frac{5}{6}$C.$\frac{3}{2}$D.2

分析 由已知利用同角三角函數(shù)基本關(guān)系式化弦為切,即可計算得解.

解答 解:∵tanα=3,
∴$\frac{2sinα-cosα}{sinα+3cosα}$=$\frac{2tanα-1}{tanα+3}$=$\frac{2×3-1}{3+3}$=$\frac{5}{6}$.
故選:B.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.命題“對任意x∈R,都有x2≥0”的否定為存在x0∈R,使得x${\;}_{0}^{2}$<0.存在x0∈R,使得x${\;}_{0}^{2}$<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)[x]表示不超過x的最大整數(shù)(如$[2]=2,[{\frac{5}{4}}]=1$),對于函數(shù)f(x)=$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$,函數(shù)$g(x)=[{f(x)-\frac{1}{2}}]+[{f(-x)-\frac{1}{2}}]$的值域是( 。
A.{-1,0}B.{-1,1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知參數(shù)方程$\left\{\begin{array}{l}{x=at+lcosq}\\{y=bt+lsinq}\end{array}\right.$(a、b、l均不為零,0≤q≤2p),若分別、賢為參數(shù),②l為參數(shù),③q為參數(shù),則下列結(jié)論中成立的是(  )
A.①、②、③均直線B.只有②是直線C.①、②是直線,③是圓D.②是直線,①、③是圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)a,b∈R,函數(shù)f(x)=ex-alnx-a,其中e是自然對數(shù)的底數(shù),曲線y=f(x)在點(1,f(1))處的切線方程為(e-1)x-y+b=0.
(1)求實數(shù)a,b的值;
(2)求證:函數(shù)y=f(x)存在極小值;
(3)若?x∈[$\frac{1}{2}$,+∞),使得不等式$\frac{e^x}{x}$-lnx-$\frac{m}{x}$≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出n的值是( 。
A.5B.15C.23D.31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)$f(x)=1+\frac{1}{x}+lnx+\frac{lnx}{x}$,試判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列說法中正確的有③
①向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學模型是古典概型.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準確.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某人射擊一次擊中目標概率為$\frac{3}{5}$,經(jīng)過3次射擊,記X表示擊中目標的次數(shù),則方差D(X)=( 。
A.$\frac{18}{25}$B.$\frac{6}{25}$C.$\frac{3}{5}$D.$\frac{9}{5}$

查看答案和解析>>

同步練習冊答案