分析 (1)$\sqrt{3}$(a-ccosB)=bsinC,由正弦定理可得:$\sqrt{3}$(sinA-sinCcosB)=sinBsinC,由sinB≠0,展開可得tanC=$\sqrt{3}$,即可得出.
(2)由余弦定理可得:c2=a2+b2-2abcos$\frac{π}{3}$,再利用基本不等式的性質(zhì)可得:4≥ab>0,S△ABC=$\frac{1}{2}ab$sin$\frac{π}{3}$=$\frac{\sqrt{3}}{4}$ab即可得出.
解答 解:(1)∵$\sqrt{3}$(a-ccosB)=bsinC,由正弦定理可得:$\sqrt{3}$(sinA-sinCcosB)=sinBsinC,
化為:$\sqrt{3}$[sin(B+C)-sinCcosB]=$\sqrt{3}$sinBcosC=sinBsinC,
∵sinB≠0,
∴tanC=$\sqrt{3}$,
∵C∈(0,π),
∴C=$\frac{π}{3}$.
(2)c=2,C=$\frac{π}{3}$,由余弦定理可得:c2=a2+b2-2abcos$\frac{π}{3}$,
∴4≥2ab-ab=ab>0,當(dāng)且僅當(dāng)a=b=2時(shí)取等號(hào).
又S△ABC=$\frac{1}{2}ab$sin$\frac{π}{3}$=$\frac{\sqrt{3}}{4}$ab≤$\sqrt{3}$,當(dāng)且僅當(dāng)a=b=2時(shí)取等號(hào).
點(diǎn)評(píng) 本題考查了正弦定理余弦定理、基本不等式的性質(zhì)、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0) | B. | (0-1) | C. | (-$\frac{1}{8}$,0) | D. | (0,-$\frac{1}{8}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>-1} | B. | {x|x<1} | C. | {x|-1<x<2} | D. | {x|x<-1或x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓錐的側(cè)面展開圖是一個(gè)等腰三角形 | |
B. | 棱柱的兩個(gè)底面全等且其余各面都是矩形 | |
C. | 任何一個(gè)棱臺(tái)的側(cè)棱必交于同一點(diǎn) | |
D. | 過(guò)圓臺(tái)側(cè)面上一點(diǎn)有無(wú)數(shù)條母線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com